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Limited information approaches overcome sparsity issues and computational chal-
lenges in traditional goodness-of-fit tests. This paper describes the implementation
of LIGOF tests for ordinal factor models that have been fitted using the {lavaan}
package in R. The tests are computationally efficient and reliable, and adapted
to suit whichever parameter estimation procedure was used to fit the model. The
implementation is available as an R package called {lavaan.ligof}.

1 Introduction

• Focus on limited information methods that use up to second-order moments of the data.
• This synergises well with the LIGOF tests which also use up to second-order moments.
• IF full information tests are used, then there is still the computational burden of

computing the full multinomial matrix Σ which grows exponentially with the number of
variables. Using limited information methods to estimate the parameters offers a way to
avoid this.

• Besides, most software uses limited information methods to estimate the parameters of
ordinal factor models, such as the {lavaan} package in R, Mplus, Stata, and LISREL.

• Sometimes, GLS methods involve a fit function which are themselves asymptotically
chi square, and this can be used for testing fit. However, more popular versions use
thresholds and polychoric correlations, and in this case it is not possible to detect sources
of misfit.

• It would appear that calculation of LIGOF tests statistics involve quantities that are
already computed in the process of estimating the parameters of the model, so it is not
computationally burdensome to compute these tests.
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Table 1: Response patterns for p = 3 with m1 = 2, and m2 = m3 = 3.

r y1 y2 y3 Pattern
1 1 1 1 111
2 1 1 2 112
3 1 1 3 113
4 1 2 1 121
5 1 2 2 122
6 1 2 3 123
7 1 3 1 131
8 1 3 2 132
9 1 3 3 133
Source: Article Notebook

r y1 y2 y3 Pattern
10 2 1 1 211
11 2 1 2 212
12 2 1 3 213
13 2 2 1 221
14 2 2 2 222
15 2 2 3 223
16 2 3 1 231
17 2 3 2 232
18 2 3 3 233
Source: Article Notebook

2 Methods

2.1 Ordinal data

Consider the case of analysing multivariate data y = (y1, . . . , yp)⊤, where each item yi is an
ordinal random variable with mi categories, i = 1, . . . , p. Let R = {c = (c1, . . . , cp)⊤ | ci ∈
{1, . . . , mi}} be the set of all possible response patterns, and let R =

∏
i mi be the cardinality

of this set. The joint probability of observing a response pattern cr ∈ R is given by

πr = Pr(y = cr) = Pr(y1 = cr1, . . . , yp = crp), r = 1, . . . , R, (1)

with
∑

r πR = 1. Collect all response probabilities into the vector π = (π1, . . . , πR)⊤ ∈ [0, 1]R.
An example with p = 3, m1 = 2, and m2 = m3 = 3 is given below. In total, there are
R = 2 × 3 × 3 = 18 response patterns as shown in Table 1.

Later on we wish to use lower-order residuals to assess the fit of a model to the data, which
first requires a description of lower-order moments and its connection to the joint response
probabilities. Marginally, each yi can be viewed as a multinoulli random variable with event
probabilities π

(i)
k = Pr(yi = k), k = 1, . . . mi, that sum to one. Therefore, this univariate

distribution is characterised by its (mi − 1) moments π
(i)
2 , . . . , π

(i)
mi , with the first moment

being redundant due to the sum to unity constraint. All univariate moments can be collected
into the vector π̇1 = (π(i)

k )⊤ whose dimension is S1 =
∑

i(mi − 1). In a similar light, the
bivariate distribution of (yi, yj) is characterised by its (mi − 1)(mj − 1) joint moments π

(ij)
k,l =

Pr(yi = k, yj = l), k = 2, . . . , mi, l = 2, . . . , mj . Also collect all bivariate moments into the
vector π̇2 = (π(ij)

k,l )⊤ whose dimension is S2 =
∑

i<j(mi − 1)(mj − 1). Finally, denote by
π2 = (π̇⊤

1 , π̇⊤
2 )⊤ the vector of multivariate moments up to order 2, which is a vector of length

S = S1 + S2.
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Because the lower order moments are contained in the higher order moments, the vector π2
can be extracted from the joint probabilities π via a linear operation π2 = T2π (Jamil et al.,
2025). As an example, continuing from the p = 3 instance above, the moments for the first
variable y1, Pr(y1 = 2) can be obtained by summing over all joint probabilities whose patterns
contain y1 = 2. The positions of these joint probabilities in the vector π are picked up by the
first row of the matrix T2. Similarly, the two bivariate moments of (y1, y2), i.e. π

(12)
22 and π

(12)
23

are obtained by summing over the joint probabilities whose patterns contain y1 = 2 and y2 = 2,
and y1 = 2 and y2 = 3, respectively.

111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233
Y1=2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
Y2=2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
Y2=3 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
Y3=2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Y3=3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
Y1=2,Y2=2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
Y1=2,Y2=3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Y1=2,Y3=2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
Y1=2,Y3=3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
Y2=2,Y3=2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
Y2=2,Y3=3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
Y2=3,Y3=2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
Y2=3,Y3=3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Source: Article Notebook

Figure 1: Matrix T2 for the case of p = 3 with m1 = 2, and m2 = m3 = 3.

Note that this construction of lower-order moments generalises to any order q ≤ p, but the total
number of moments up to order q grows combinatorially in both p and the category counts mi,
yielding design matrices Tq that can become computationally burdensome. Moreover, although
we arbitrarily dropped the first moment in the foregoing construction, the choice of which
category to omit is immaterial. This is because category probabilities sum to one, so excluding
any one category produces a similar-dimensional parameterisation algebraically equivalent to
excluding any other. For further details, consult Reiser (1996) and Maydeu-Olivares & Joe
(2006).

2.2 Confirmatory factor analysis

The confirmatory factor analysis (CFA) model imposes a structure on the joint response
probabilities by assuming that the p observed variables are manifestations of a smaller set of
q latent variables. In this way, the CFA may be viewed as a data-reduction technique since,
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effectively, the correlations among variables are modelled by a pre-specific factor structure
using lower-dimensional data summaries.

CFA is typically used for continuous manifest variables, but it can also be applied to ordinal
data. A common approach is the underlying variable (UV) approach, where the observed
responses yi are assumed to be discretised versions of continuous latent variables y∗

i . The
connection is made through

yi =



1 τ
(i)
0 < y∗

i < τ
(i)
1

2 τ
(i)
1 < y∗

i < τ
(i)
2

3 τ
(i)
2 < y∗

i < τ
(i)
3

...
...

mi τ
(i)
mi−1 < y∗

i < τ
(i)
mi ,

with the thresholds τ
(i)
k for item i satisfying the ordering

−∞ ≡ τ
(i)
0 < τ

(i)
1 < τ

(i)
2 < · · · < τ

(i)
mi−1 < τ (i)

m ≡ +∞.

Evidently, the model is invariant to a linear transformation, since scaling and shifting the
underlying variables y∗

i do not affect the outcome of the ordinal variable yi. For this reason
it is convenient to assume, for the purposes of model identifiability, a zero mean Gaussian
distribution y∗ ∼ Np(0, Σy∗), where Σy∗ is a correlation matrix.

The underlying continuous variables y∗, unlike their discrete counterparts y, are now suitable
to be modelled using a factor analysis model. Here, the goal is to find a set of latent factors
η = (η1, . . . , ηq)⊤ ∈ Rq, with q ≪ p, that sufficiently explain the covariance structure of the
p-dimensional variable space. This is achieved by the relationship

y∗ = Λη + ϵ,

where Λ is a (often sparse) p × q matrix of factor loadings, and ϵ is a vector of residuals.
Certain distributional assumptions are made, namely that η ∼ Nq(0, Ψ) with Ψ a correlation
matrix, ϵ ∼ Np(0, Θϵ) with Θϵ = I − diag(ΛΨΛ⊤), and that Cov(η, ϵ) = 0. Together, this
implies that the polychoric correlation matrix of y is given by

Σy∗ = ΛΨΛ⊤ + Θϵ ∈ Rp×p.

As a remark, the UV approach is commonly employed in the context of confirmatory factor
analysis (CFA) models due to the ease of modelling, though other approaches such as item
response theory (IRT) models are also available (Jöreskog & Moustaki, 2001).

For this factor analysis model, the parameters of interest are the non-zero entries λ of the
loading matrix Λ, the unique non-diagonal entries ψ in the factor correlation matrix Ψ, and
the thresholds τ (i) = (τ (i)

1 , . . . , τ
(i)
mi−1)⊤ for each ordinal item yi. Collectively, these parameters
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are denoted by θ = (λ⊤,ρ⊤, τ (1), . . . , τ (p))⊤ belonging to some parameter space Θ. Under this
CFA model, each joint response probability πr from Equation 1 is now evaluated as a function
of θ:

πr := πr(θ) =
∫

· · ·
∫

Cr

ϕp(y∗ | 0, Σy∗) dy∗, (2)

where the p-dimensional integral is taken over the set Cr = {y∗ ∈ Rp | yi = cri, i = 1, . . . , p},
the set of all continuous values that yield the response pattern cr.

2.3 Consistent estimators for θ

Suppose that a sample Y = {y(h)}n
h=1 is obtained, where y(h) = (y(h)

1 , . . . , y
(h)
p )⊤ represents

the p-dimensional ordinal-data observation from subject h ∈ {1, . . . , n}. As a remark, samples
may not necessarily be independent, and in such cases, corresponding sampling weights ωs

can be used to account for the sampling design (Jamil et al., 2025), and most of what will be
discussed below can be adapted to account for this.

Many methods exist to estimate the parameters θ of the CFA model, but we are most interested
in those that yield a

√
n-consistent and asymptotically normal estimator. Specifically, we

assume that θ̂ satisfies √
n(θ̂ − θ) = Q̂ ·

√
n(p − π(θ)) + op(1), (3)

where the term p = (p1, . . . , pR)⊤ is the vector of empirical joint response proportions, and
Q̂ P−→ Q as n → ∞ is some influence matrix that performs asymptotic linearisation from the
joint response proportions p to the parameters θ. This includes a wide range of likelihood-based
(Bock & Lieberman, 1970; Lord, 1968) and pseudolikelihood-based (Alfonzetti et al., 2025;
Katsikatsou et al., 2012) methods, as well as generalised least squares (GLS) based methods
(Christoffersson, 1975; Jöreskog, 1990, 1994; Jöreskog & Moustaki, 2001; Muthén, 1978, 1984),
with GLS popularly implemented as a multi-stage estimation procedure in software. Equation 3
holds true whether full information methods (i.e., estimation using joint response probabilities)
or limited information methods (i.e., using a lower-order subset of the response probabilities)
are employed.

A neat way of viewing the parameter estimation is that most of these methods are a class of
M-estimators. M-estimation provides a general and flexible framework for parameter estimation,
in which estimators are obtained by minimizing an objective function F (θ), typically expressed
as an empirical average

∑n
s=1 F (ys, θ), or, equivalently, by solving a system of estimating

equations
∑n

s=1 ∇θF (ys, θ) = 0, where ∇θF = ∂F/∂θ. This formulation encompasses a wide
range of classical and robust procedures, including maximum likelihood, least squares, and
weighted least squares methods mentioned above.

In the context of confirmatory factor analysis (CFA) with ordinal indicators, the estimating
equations typically arise from a discrepancy function defined on thresholds and polychoric
correlations, and M-estimation offers a principled way to derive estimators even when the full
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likelihood is computationally intractable. A central assumption in this framework is that there
exists a parameter θ0 ∈ Θ such that the population moment condition E[∇θF (y, θ0)] = 0 holds.
This condition is not a consequence of the data, but rather a theoretical premise about the
underlying data-generating mechanism. It defines the parameter value to which the estimator
is expected to converge. In a correctly specified model, θ0 corresponds to the true parameter; in
the presence of misspecification, it instead represents the value that best satisfies the moment
condition within the assumed model class.

Under standard regularity conditions—such as continuity of ∇θF in θ, measurability, and
uniform convergence of empirical averages—the M-estimator θ̂ is consistent and asymptotically
normal (Huber, 1964; van der Vaart, 1998). Specifically,

√
n(θ̂ − θ) D−→ N(0, V(θ)),

where the asymptotic variance is given by the sandwich formula V(θ) = H(θ)−1J (θ)H(θ)−T ,
with

H(θ) = E
[
−∇2

θ F (y, θ)
]

, J (θ) = E
[
∇θ F (y, θ) ∇θ F (Y, θ)⊤

]
.

The matrix H is known as the sensitivity matrix and is estimated consistently by Ĥ =
− 1

n

∑n
s=1 ∇2

θ F (ys, θ̂). The matrix J is known as the variability matrix and is estimated
consistently by Ĵ = 1

n

∑n
s=1 ∇θ F (ys, θ̂)∇θ F (ys, θ̂)⊤.

These properties make M-estimation particularly appealing in settings where the data are ordinal
and the working model may be misspecified, as is often the case in large-scale psychometric
applications. For a detailed treatment of the asymptotic theory of M-estimators in econometric
and semiparametric contexts, see Newey & McFadden (1994). For the commonly used techniques
to estimate CFA, the table below gives an overview for the form that F and its derivatives
take.

Source: Article Notebook

Achieving the desired form stated in Equation 3 requires an asymptotic linearisation argument.
For CFA models, a general M-estimator θ̂ for θ is obtained by solving the set of estimating
equations

U(θ) := nD(θ)⊤Wθ(m − µ(θ)) = 0
where m is a vector of sample moments, µ(θ) is the vector of model-implied moments, D(θ) is
the Jacobian of the model-implied moments with respect to θ, and Wθ is a weight matrix which
may or may not depend on the parameters. Table 2 summarises these quantities for different
estimators most commonly used for CFA. Under correct model specification, the sensitivity
matrix takes the form

H(θ) = D(θ)⊤WθD(θ).

A first-order Taylor expansion of U(θ̂) around θ with a little rearranging and multiplying
through by

√
n gives
√

n (θ̂ − θ) =
[
− 1

n

∂U(θ)
∂θ

]−1
D(θ)⊤Wθ ·

√
n(m − µ(θ)) + op(1),
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Table 2: Objective functions and their derivatives for different estimators.

m − µ(θ) W−1 D(θ)
ML1 p − π(θ) diag(π(θ)) ∂π(θ)/∂θ
PML2 ppair − πpair(θ) diag(πpair(θ)) ∂πpair(θ)/∂θ
UBN3 p2 − π2(θ) diag(π2(θ)) ∂π2(θ)/∂θ
MCS4 p − π(θ) Σ ∂π(θ)/∂θ
MCS24 p2 − π2(θ) Σ2 ∂π2(θ)/∂θ
ULS5 s − σ(θ) I ∂σ(θ)/∂θ
WLS5 s − σ(θ) Γ = limvar(s − σ(θ)) ∂σ(θ)/∂θ
DWLS5 s − σ(θ) diag(Γ) ∂σ(θ)/∂θ

1 Maximum likelihood (Lord 1968; Bock and Lieberman 1970)
2 Pairwise maximum likelihood (Katsikatsou, Moustaki, Yang-Wallentin, and Jöreskog
2012). ppair and πpair(θ) vectors of sample and model-implied pairwise response
probabilities, respectively.
3 Underlying bivariate normal approach (Jöreskog and Moustaki 2001)
4 Minimum chi square (Christoffersson 1975; Muthén 1978)
5 Unweighted, weighted, or diagonally weighted least squares (Muthén 1984; Jöreskog
1990, 1994). s and σ(θ) vectors of sample and model-implied thresholds and polychoric
correlations, respectively.
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where the observed Hessian − 1
n∂U(θ)/∂θ

P−→ H(θ) as n → ∞. Taking limits, we see the
influence matrix for CFA shaping up to involve[

− 1
n

∂U(θ)
∂θ

]−1
D(θ)⊤Wθ

P−→ H(θ)−1D(θ)⊤Wθ =: Q̃ as n → ∞.

For certain full-information estimators like ML and MCS, Q̃ fits in to be premultiplied
to the the R-vector of moment differences m − µ(θ) = p − π(θ), and thus Equation 3 is
satisfied. Incidentally, in the case of ML, the influence matrix is Q = I−1∆W ∈ Rt×R, where
I = ∆⊤W−1∆⊤ is the unit Fisher information, ∆ = (∂π/∂θ) is the Jacobian of the joint
response probabilities with respect to the parameters, and W = diag(π) is a diagonal matrix
of the joint response probabilities, agreeing with results in Maydeu-Olivares & Joe (2005). It
can be further shown that Q simplifies to ∆⊤I−1∆.

In other cases, we need to post multiply the influence matrix Q̃ by an appropriate matrix so
that it is able to conform to a matrix-vector multiplication with the joint probabilities as per
Equation 3. This depends on the vector of moment differences. Consider a transformation
g : p 7→ m that maps the joint response probabilities p to the moments m (and likewise for the
model implied moments), and let G := ∂g/∂p be the Jacobian of the transformation. When
dealing with PML, UBN or MCS2, then the transformation is linear since the lower order
moments are linear functions of the joint response probabilities. On the other hand, ULS, WLS,
and DWLS methods specify a transformation that is not linear, where the joint probabilities
are mapped to the thresholds and polychoric correlations. Such a transformation was described
by Muthén (1978) in the context of dichotomous data, but extends to the case of ordinal data
too. In any case, √

n(m − µ(θ)) =
√

n
(
g(p) − g(π(θ))

)
= G

√
n

(
p − π(θ)

)
+ op(1).

(4)

Plugging this into the above equation lets us see the form of the influence matrix as Q =
H(θ)−1D(θ)⊤WθG.

When using limited information methods, it would be sufficient to consider the lower-order
moments transformation g2 : p2 7→ m instead. For PML, UBN, and MCS2 this is clearly
obvious. For ULS, WLS, and DWLS, this also makes sense because the the thresholds and
polychoric correlations are functions of univariate and bivariate moments respectively. Letting
G2 := ∂g2/∂p2, we have

√
n(m − µ(θ)) =

√
n

(
g(p2) − g(π2(θ))

)
= G2

√
n

(
p2 − π2(θ)

)
+ op(1)

= G2T2
√

n
(
p − π(θ)

)
+ op(1),

(5)

and thus Equation 3 holds with the influence matrix Q = Q2T2, where Q2 = H(θ)−1D(θ)WθG2.
Consequently, when using limited information methods to estimate the parameters of a CFA
model, it is sufficient to consider only consistency in relation to univariate and bivariate
probabilities. We will see that this is useful when we come to the topic of residuals.

8



2.4 Distribution of residuals

Let pr = nr/n be the rth entry of the R-vector of sample proportions p, where nr is the
number of times the response pattern cr was observed in the sample Y. The random vector
n = (n1, . . . , nR)⊤ follows a multinomial distribution with parameters n, R, and π, with
E(n) = nπ and variance

Var(n) = n(diag(π) − ππ⊤) = nΣ.

It is widely known (Agresti, 2002) for iid samples that
√

n(p − π) D−→ NR(0, Σ) (6)

as n → ∞, which is a consequence of the central limit theorem. Note that this also works for
the case of weighted samples in complex sampling designs, but Σ need not take a multinomial
form in such cases (Fuller, 2009).

Consider testing the composite null hypothesis of H0 : π = π(θ0) against the alternative
H1 : π ̸= π(θ0). To do so, use the univariate and bivariate residuals ê2 = T2(p − π(θ̂)) = T2ê
as the basis for the test statistic. Now we derive the asymptotic distribution of this quantity.
Write √

n ê =
√

n (p − π(θ0)) −
√

n (π(θ̂) − π(θ0))
=

√
n (p − π(θ0)) −

√
n ∆(θ̂ − θ0) + op(1),

where we had considered a Taylor expansion of π(θ̂) around θ0 to get to the second line, and
defined ∆ =

(
∂π(θ)/∂θ

)
. Now, for

√
n-consistent estimators satisfying Equation 3, we have

that √
n ê =

√
n (p − π(θ0)) − ∆Q̂ ·

√
n (p − π(θ0)) + op(1)

= (I − ∆Q̂) ·
√

n (p − π(θ0)) + op(1),

so it is clear that ê is asymptotically normal by the CLT (Equation 6). Let limvar(ê) = Ω.
Then, since ê2 = T2ê, the lower-order residuals are also asymptotically normal with zero mean
and variance Ω2 = T2ΩT⊤

2 . The full form of the asymptotic variance is given by

Ω2 = Σ2 − ∆2QΣT⊤
2 − T2ΣQ⊤∆⊤

2 + ∆2QΣQ⊤∆⊤
2 , (7)

where ∆2 = T2∆. See Maydeu-Olivares & Joe (2008) for further details, including the use of
residuals from moments of up to order q < p.

In practice, when limited informationntroduces inconsistency between the estimation method
and the quantities derived from it, potentially leading to misleading inferences or misinterpreta-
tion of model fit. methods are used to estimate the parameters, the estimation of Ω2 involves
plugging in full information quantities such as fitted probabilities and Jacobians. This is less
than ideal, since it introduces inconsistency between the estimation method and the quantities
derived from it, potentially leading to misleading inferences or misinterpretation of model fit.
Furthermore, quantities such as the multinomial covariance matrix Σ becomes exponentially
large in dimension as p increases, making it difficult to work with.
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One solution is to consider the weaker
√

n-consistent condition for limited information estimators
suggested by Equation 5, in which the influence matrix Q2 is utilised. Since Q = Q2T2,
Equation 7 will simplify to

Ω2 = Σ2 − ∆2Q2Σ2 − Σ2Q⊤
2 ∆⊤

2 + ∆2Q2ΣQ⊤
2 ∆⊤

2

= (I − ∆2Q2)Σ2(I − ∆2Q2)⊤.
(8)

where Σ2 = T2ΣT⊤
2 is the covariance matrix of the lower-order moments. Computationally

this is more efficient as it uses only quantities involving uni and bivariate moments, which are
much smaller in size than the full joint response probabilities.

2.5 Wald-type tests

Given as ê2
D−→ NS(0, Ω2), we can construct a Wald test statistic for the null hypothesis

H0 : π = π(θ0) as
X2 = n ê⊤

2 Ω̂−1
2 ê2,

where Ω̂2 is a consistent estimator of Ω2. This test statistic is asymptotically distributed as
chi square under the null hypothesis, with degrees of freedom equal to S − t, i.e. the number of
lower-order moments used in the test minus the number of parameters estimated.

The computational challenges here are in the estimation of Ω̂2 as well as the inversion of
the matrix. Addressing the second issue first, suppose an estimator Ω̂2 is available, then the
Moore-Penrose pseudoinverse Ω̂+

2 can be computed using the singular value decomposition
(SVD) of Ω̂2. This sidesteps any numerical instabilities that may occur when inverting the
matrix directly, since the rank of Ω2 may be deficient (Reiser, 1996), although inversion can
still be computationally challenging when the dimension S is large.

Jamil et al. (2025) instead proposed a diagonal Wald test, in which diag(Ω̂2)−1 is used instead
of the full matrix inverse. Since inverting a diagonal matrix is straightforward compared to
the full (pseudo) inverse, this is indeed computationally efficient. However, simulation stadies
show that this is not as powerful as the full Wald test, in the context of pairwise likelihood
estimation of binary CFA models.

On the estimation of Ω2, which involves estimation of the Q matrix, which may be involved
depending on the estimation method used. A very attractive proposal by Maydeu-Olivares and
Joe (2005; 2006, 2008) is to consider using a matrix Ξ such that Ω2 is a generalised inverse
of Ξ, i.e. Ξ = ΞΩ2Ξ. By denoting ∆⊥

2 to be an S × (S − t) orthogonal complement to ∆2
satisfying ∆⊥

2 ∆⊤
2 = 0, it can be shown that X2 = ê⊤

2 Ξ̂ê2 converges to the Wald test statistic
with similar degrees of freedom (Jamil et al., 2025), where

Ξ = ∆⊥
2

(
(∆⊥

2 )⊤Σ2∆⊥
2

)−1(∆2)⊤.

This is advantageous in that it does not require the estimation of Q, and only requires the
Jacobian ∆2 as well as a consistent estimator for Σ2.
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2.6 Pearson and general LIGOF tests

Wald-type tests may behave unstably and has poor small-sample behaviour (Jamil et al., 2025).
As an alternative, a Pearson-type test can be constructed using the Pearson residuals

X2 = n ê⊤
2 diag(π2(θ̂))−1ê2

= n
∑
i,k

p
(i)
k − π

(i)
k (θ̂)

π
(i)
k (θ̂)

+ n
∑
i<j

∑
k<l

p
(ij)
k,l − π

(ij)
k,l (θ̂)

π
(ij)
k,l (θ̂)

,

where p
(i)
k and p

(ij)
k,l are the sample estimates for the univariate and bivariate response probabili-

ties defined earlier. Similar test statistics were studied by Cai et al. (2006) and Bartholomew &
Leung (2002), where the latter considered only bivariate margins. The Pearson test statistic does
not follow an asymptotic chi-square distribution because of the dependence of the summands in
the above equation. It does however converge to a sum of scaled chi-square variables

∑S
s=1 δsZs,

where each Zs
iid∼ χ2

1 and δs are the eigenvalues of M = Ω−1/2
2 diag(π2(θ0))−1Ω−1/2

2 .

For calculation of p-values, a moment matching procedure can be employed (Jamil et al.,
2025; Maydeu-Olivares & Joe, 2008), where the first three moments of X2 are matched to the
first three moments of some chi-square random variate, which is then used as the reference
distribution to conduct the test. The moments of X2 are estimated using trace product formulae
involving diag(π2(θ̂)) as well as Ω̂2. Though the Pearson test looks as if the Ω2 matrix is not
required, it is actually required to compute the p-values.

More generally, any LIGOF test statistic can be constructed using X2 = ê⊤
2 Ξ̂ê2, where Ξ̂ D−→ Ξ

is some S × S weight matrix that can be arbitrarily chosen. We saw earlier that the Wald test
involves Ξ̂ = Ω̂+

2 , while the Pearson test involves Ξ̂ = diag(π2(θ̂))−1. Other choices for this
weight matrix are Ξ̂ = I (RSS test) or Ξ̂ = Σ̂−1

2 (Multinomial test). Table 3 summarises the
test weights discussed so far.

Table 3: Various LIGOF test statistics for ordinal CFA models.

Name Ξ̂ D.f.

1 Wald Ω̂+
2 S − t

2 Wald (VCF) ∆⊥
2

(
(∆⊥

2 )⊤Σ2∆⊥
2

)−1(∆2)⊤ S − t

3 Wald (Diag.) diag(Ω̂2)−1 est.
4 Pearson diag(π̂2)−1 est.
5 RSS I est.
6 Multinomial Σ̂−1

2 est.
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