
Chapter 2

Vector space of functions

For regression modelling with I-priors, it is assumed that the regression functions lie
in some vector space of functions. The purpose of this chapter is to provide a con-
cise review of functional analysis leading up to the theory of reproducing kernel Hilbert
and Kreĭn spaces (RKHS/RKKS). The interest with these RKHSs and RKKSs is that
these spaces have well established mathematical structure and offer desirable topologies.
In particular, it allows the possibility of deriving the Fisher information for regression
functions—this will be covered in Chapter 3. As we shall see, RKHSs are also extremely
convenient in that they may be specified completely via their reproducing kernels. Sev-
eral of these function spaces are of interest to us, for example, spaces of linear functions,
smoothing functions, and functions whose inputs are nominal values and even functions
themselves. RKHSs are widely studied in the applied statistical and machine learning
literature, but perhaps RKKSs are less so. To provide an early insight, RKKSs are sim-
ply a generalisation of RKHSs, whose reproducing kernels are defined as the difference
between two RKHS kernels. The flexibility provided by RKKSs will prove both useful
and necessary, especially when considering sums and products of scaled function spaces,
as is done in I-prior modelling.

It is emphasised that a deep knowledge of functional analysis, including RKHS and
RKKS theory, is not at all necessary for I-prior modelling, so perhaps the advanced reader
may wish to skip Sections 2.1 to 2.3. Section 2.4 describes the fundamental RKHSs of
interest for I-prior regression, which we refer to as the “building block” RKHSs. The
reason for this is that it is possible to construct new function spaces from existing ones,
and this is described in Section 2.5.

Two remarks before starting, and the first is on notation. Sets and vector spaces are
denoted by calligraphic letters, and as much as possible, we shall stick to the convention
that F denotes a function space, and X denotes the set of covariates or function inputs.
Occasionally, we will describe a generic Hilbert space denoted by H. Elements of the
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vector space of real functions over a set X are denoted by f(·), but more commonly and
simply, by f . This distinguishes them from the actual evaluation of the function at an
input point x ∈ X , denoted f(x) ∈ R. To make for a cleaner read, we dispense with
boldface notation for vectors and matrices when talking about them, without ambiguity,
in the abstract sense. Secondly, on bibliography: references will be minimised throughout
the presentation of this chapter, but a complete annotated bibliography is furnished at
the end in Section 2.6.

2.1 Some functional analysis

The core study of functional analysis revolves around the treatment of functions as ob-
jects in vector spaces over a field1. Vector spaces, or linear spaces as they are sometimes
known, may be endowed with some kind of structure so as to allow ideas such as closeness
and limits to be conceived. Of particular interest to us is the structure brought about
by inner products, which allow the rigorous mathematical study of various geometrical
concepts such as lengths, directions, and orthogonality, among other things. We begin
with the definition of an inner product.

Definition 2.1 (Inner products). Let F be a vector space over R. A function ⟨·, ·⟩F :

F × F → R is said to be an inner product on F if all of the following are satisfied:

• Symmetry. ⟨f, g⟩F = ⟨g, f⟩F , ∀f, g ∈ F .

• Linearity. ⟨λ1f1+λ2f2, g⟩F = λ1⟨f1, g⟩F+λ2⟨f2, g⟩F , ∀f1, f2, g ∈ F , ∀λ1, λ2 ∈ R.

• Non-degeneracy. ⟨f, f⟩F = 0 ⇔ f = 0.

Additionally, an inner product is said to be positive definite if ⟨f, f⟩F ≥ 0, ∀f ∈ F .
Inner products need not necessarily be positive definite, and we shall revisit this fact
later when we cover Kreĭn spaces. For the purposes of the forthcoming discussion, the
inner products that are referenced are the positive-definite kind, unless otherwise stated.

We can always define a norm on F using the inner product as

∥f∥F =
√
⟨f, f⟩F . (2.1)

Norms are another form of structure that specifically captures the notion of length. This
is defined below.

Definition 2.2 (Norms). Let F be a vector space over R. A non-negative function
|| · ||F : F × F → [0,∞) is said to be a norm on F if all of the following are satisfied:

• Absolute homogeneity. ||λf ||F = |λ| ||f ||F , ∀λ ∈ R, ∀f ∈ F
1In this thesis, this will be R exclusively.
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• Subadditivity. ||f + g||F ≤ ||f ||F + ||g||F , ∀f, g ∈ F

• Point separating. ||f ||F = 0 ⇔ f = 0

Note that since ∥−f∥F = |−1| ∥f∥F = ∥f∥F , and by the subadditivity and point sepa-
rating property, we have that ∥f∥F = 1

2∥f∥F + 1
2∥−f∥F ≥ 1

2∥f−f∥F = 0, thus implying
non-negativity of norms.

The subadditivity property is also known as the triangle inequality. Following this,
there is also the reverse triangle inequality, which states ∥f − g∥F ≥

∣∣∥f∥F − ∥g∥F
∣∣. In

fact, the general forms of these triangle inequalities (Bergsma, 2018, Lemma 10) also
hold for 0 ≤ a ≤ 1 and any f, g, h ∈ F :

∥f − g∥aF ≤ ∥f − h∥aF + ∥g − h∥aF (2.2)

∥f − g∥aF ≥
∣∣∥f∥aF − ∥g∥aF

∣∣ (2.3)

Several other important relationships involving norms and inner products hold in linear
spaces, namely, the Cauchy-Schwarz inequality

|⟨f, g⟩F | ≤ ∥f∥F ∥g∥F ,

the parallelogram law

∥f + g∥2F + ∥f − g∥2F = 2∥f∥2F + 2∥g∥2F ,

and the polarisation identity (in various forms)

∥f + g∥2F − ∥f − g∥2F = 4⟨f, g⟩F ,

∥f + g∥2F − ∥f∥2F − ∥g∥2F = 2⟨f, g⟩F , and

−∥f − g∥2F + ∥f∥2F + ∥g∥2F = 2⟨f, g⟩F ,

for any f, g ∈ F .

A vector space endowed with an inner product (c.f. norm) is called an inner product
space (c.f. normed vector space). As a remark, inner product spaces can always be
equipped with a norm using (2.1), but not always the other way around. A norm needs
to satisfy the parallelogram law for an inner product to be properly defined.

The norm || · ||F , in turn, induces a metric (a notion of distance) on F , i.e. D(f, g) =

||f−g||F , for f, g ∈ F . With these notions of distances, one may talk about sequences of
functions in F which are convergent, and sequences whose elements become arbitrarily
close to one another as the sequence progresses (Cauchy).

Definition 2.3 (Convergent sequence). A sequence {fn}∞n=1 of elements of a normed
vector space (F , || · ||F ) is said to converge to some f ∈ F , if for every ϵ > 0, ∃N =

N(ϵ) ∈ N, such that ∀n > N , ||fn − f ||F < ϵ.
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Definition 2.4 (Cauchy sequence). A sequence {fn}∞n=1 of elements of a normed vector
space (F , || · ||F ) is said to be a Cauchy sequence if for every ϵ > 0, ∃N = N(ϵ) ∈ N,
such that ∀n,m > N , ||fn − fm||F < ϵ.

Every convergent sequence is Cauchy (from the triangle inequality), but the converse
is not true. If the limit of the Cauchy sequence exists within the vector space, then the
sequence converges to it. A vector space is said to be complete if it contains the limits
of all Cauchy sequences, or in other words, if every Cauchy sequence converges. There
are special names given to complete vector spaces. A complete inner product space
is known as a Hilbert space, while a complete normed space is called a Banach space.
Out of interest, an inner product space that is not complete is sometimes known as a
pre-Hilbert space, since its completion with respect to the norm induced by the inner
product is a Hilbert space.

A subset G ⊆ F is a closed subspace of F if it is closed under addition and multi-
plication by a scalar. That is, for any g, g′ ∈ G, λ1g + λ2g

′ is also in G, for λ1, λ2 ∈ R.
For Hilbert spaces, each closed subspace is also complete, and thus a Hilbert space in
its own right. Although, as a remark, not every Hilbert subspace need be closed, and
therefore complete.

Being vectors in a vector space, we can discuss mapping of vectors onto a another
space, or in essence, having a function acted upon them. To establish terminology, we
define linear and bilinear maps (operators).

Definition 2.5 (Linear map/operator). Let F and G be two Hilbert spaces over R. An
operator A is a map from F to G, and we denote its action on a function f ∈ F as
A(f) ∈ G, or simply Af ∈ G. A linear operator satisfies A(f + f ′) = A(f) + A(f ′) and
A(λf) = λA(f), for all f, f ′ ∈ F and λ ∈ R. If G is the base field (R in our case), then
the linear operator A is called a linear functional.

Definition 2.6 (Bilinear map/operator). Let F , G and H be Hilbert spaces over R. A
bilinear operator B : F × G → H is linear in each argument separately, i.e.

• B(λ1f + λ2f
′, h) = λ1B(f, h) + λ2B(f ′, h); and

• B(f, λ1g + λ2g
′) = λ1B(f, g) + λ2B(f, g′),

for all f, f ′ ∈ F , g, g′ ∈ G and λ1, λ2 ∈ R. In other words, the mappings Bg : f 7→ B(f, g)

for any g ∈ G, and Bf : g 7→ B(f, g) for any f ∈ F , are both linear maps. If F ≡ G, then
the bilinear map is symmetric. If H is the base field (R in our case), then B is called a
bilinear form.

An interesting property of these operators to look at, besides linearity, is whether or
not they are continuous.
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Definition 2.7 (Continuity). Let F and G be two Hilbert spaces. A function A : F → G
is said to be continuous at g ∈ F , if for every ϵ > 0, ∃δ = δ(ϵ, g) > 0 such that

∥f − g∥F < δ ⇒ ∥Af −Ag∥G < ϵ.

A is continuous on F , if it is continuous at every point g ∈ F . If, in addition, δ depends
on ϵ only, A is said to be uniformly continuous.

Continuity in the sense of linear operators here means that a convergent sequence in
the domain F can be mapped to a convergent sequence in the range G. For a particular
linear operator, the evaluation functional, this means that closeness in norm implies
pointwise closeness—this relates to RKHSs, which is discussed in Section 2.2. There is
an even stronger notion of continuity called Lipschitz continuity.

Definition 2.8 (Lipschitz continuity). Let F and G be two Hilbert spaces. A function
A : F → G is Lipschitz continuous if ∃M > 0 such that ∀f, f ′ ∈ F ,

∥Af −Af ′∥G ≤ M∥f − f ′∥F .

Clearly, Lipschitz continuity implies uniform continuity: choose δ = δ(ϵ) := ϵ/M and
replace this in Definition 2.7. A continuous, linear operator is also one that is bounded.

Definition 2.9 (Bounded operator). The linear operator A : F → G between two
Hilbert spaces F and G is said to be bounded if there exists some M > 0 such that

∥Af∥G ≤ M∥f∥F .

The smallest such M is defined to be the operator norm, denoted ∥A∥op := supf∈F
∥Af∥G
∥f∥F .

Lemma 2.1 (Equivalence of boundedness and continuity). Let F and G be two Hilbert
spaces, and A : F → G a linear operator. A is bounded if and only if it is continuous.

Proof. Suppose that A is bounded. Then, ∀f, f ′ ∈ F , ∃M > 0 such that ∥A(f −f ′)∥G ≤
M∥f − f ′∥G , so A is Lipschitz continuous. Conversely, let A be a continuous linear
operator, especially at the zero vector. In other words, ∃δ > 0 such that ∥A(f)∥G =

∥A(f + 0 − 0)∥G = ∥A(f) − A(0)∥G ≤ 1, ∀f ∈ F whenever ∥f∥F ≤ δ. Thus, for all
non-zero f ∈ F ,

∥A(f)∥G =

∥∥∥∥∥f∥Fδ A

(
δ

∥f∥F
f

)∥∥∥∥
G

=

∣∣∣∣∥f∥Fδ
∣∣∣∣ ∥∥∥∥A( δ

∥f∥F
f

)∥∥∥∥
G

≤ ∥f∥F
δ

· 1,

and therefore A is bounded. ■
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So important is the concept of linearity and continuity, that there are specially named
spaces which contain linear and continuous functionals.

Definition 2.10 (Dual spaces). Let F be a Hilbert space. The space F∨ of linear
functionals is called the algebraic dual space of F . The space F∗ of continuous linear
functionals is called the continuous dual space or alternatively, the topological dual space,
of F .

As it turns out, the algebraic dual space and continuous dual space coincide in finite-
dimensional Hilbert spaces: take any A ∈ F∨; since A is finite dimensional, it is bounded,
and therefore continuous (see Lemma 2.1), so A ∈ F∗ and F∨ ⊆ F∗; but F∗ ⊆ F∨

trivially, so F∨ ≡ F∗. For infinite-dimensional Hilbert spaces, this is not so, but in any
case, we will only be considering the continuous dual space in this thesis. The following
result is an important one, which states that continuous linear functionals of an inner
product space are nothing more than just inner products.

Theorem 2.2 (Riesz-Fréchet). Let F be a Hilbert space. Every element A of the con-
tinuous dual space F∗, i.e. all continuous linear functionals A : F → R, can be uniquely
written in the form ⟨·, g⟩F =: Ag ∈ F∗, for some g ∈ F . Moreover, ∥g∥F = ∥Ag∥F∗.

Proof. Omitted—see Yamamoto (2012, Thm. 4.2.1) for a proof. ■

Remark 2.1. The Riesz-Fréchet theorem is also commonly referred to as the Riesz rep-
resentation theorem for Hilbert spaces.

The notion of isometry (transformation that preserves distance) is usually associated
with metric spaces; two metric spaces being isometric means that they identical as far as
their metric properties are concerned. For Hilbert spaces (and more generally, for normed
spaces), there is an analogous concept as well in isometric isomorphism (a bijective
isometry), such that two Hilbert spaces being isometrically isomorphic imply that they
have exactly the same geometric structure, but may very well contain fundamentally
different objects.

Definition 2.11 (Isometric isomorphism). Two Hilbert spaces F and G are said to be
isometrically isomorphic, symbolised F ∼= G, if there is a linear bijective map U : F → G
which preserves the inner product, i.e. for any f, f ′ ∈ F ,

⟨f, f ′⟩F = ⟨Uf,Uf ′⟩G .

A consequence of the Riesz-Fréchet theorem is that it gives us a canonical isometric
isomorphism U : g 7→ ⟨·, g⟩F =: Ag between F and its continuous dual F∗: the map Ag is
obviously linear (by the bilinear property of inner products), and using the polarisation
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identity, we have that

2⟨Ug, Ug′⟩F∗ = ∥U(g)∥2F∗ + ∥U(g′)∥2F∗ − ∥U(g − g′)∥2F∗

= ∥g∥2F + ∥g′∥2F − ∥g − g′∥2F
= 2⟨g, g′⟩F .

Implicitly, this means that F∗ is a Hilbert space as well.

Another important type of mapping is the mapping P of an element in F onto a
closed subspace G ⊂ F , such that Pf ∈ G is closest to f . This mapping is called the
orthogonal projection, due to the fact that such projections yield perpendicularity in
the sense that ⟨f − Pf, g⟩F = 0 for any g ∈ G. Consequently, we see that ∥f∥2F =

∥Pf∥2F + ∥f − Pf∥2F from the polarisation identity. The remainder f − Pf belongs to
the orthogonal complement of G.

Definition 2.12 (Orthogonal complement). Let F be a Hilbert space and G ⊂ F be
a closed subspace. The linear subspace G⊥ = {f | ⟨f, g⟩F = 0,∀g ∈ G} is called the
orthogonal complement of G in F .

Theorem 2.3 (Orthogonal decomposition). Let F be a Hilbert space and G ⊂ F be a
closed subspace. For every f ∈ F , we can write f = g + gc, where g ∈ G and gc ∈ G⊥,
and this decomposition is unique.

Proof. Omitted—see Rudin (1987, Thm. 4.11) for a proof. ■

We can write F = G ⊕ G⊥, where the ⊕ symbol denotes the direct sum, and such
a decomposition is called a tensor sum decomposition. In infinite-dimensional Hilbert
spaces, some subspaces are not closed, but all orthogonal complements are closed. In
such spaces, the orthogonal complement of the orthogonal complement of G is the closure
of G, i.e. (G⊥)⊥ =: G, and we say that G is dense in G. Another interesting fact regarding
the orthogonal complement is that G∩G⊥ = {0}, since any g ∈ G∩G⊥ must be orthogonal
to itself, i.e. ⟨g, g⟩G = 0 implying that g = 0.

The following theorem states that orthogonal decompositions are unique.

Corollary 2.3.1. Let G be a subspace of a Hilbert space F . Then, G⊥ = {0} if and only
if G is dense in F .

Proof. If G⊥ = {0} then (G⊥)⊥ = G = F . Conversely, since G is dense in F , we have
G⊥ = G⊥

= F⊥ = {0}. ■

Besides tensor sums, of importance is the concept of tensor products, which can be
thought of as a generalisation of the outer product in Euclidean space.
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Definition 2.13 (Tensor products). Let x1 ∈ H1 and x2 ∈ H2 be two elements of two
real Hilbert spaces. Then, the tensor product x1 ⊗ x2 : H1 ×H2 → R, is a bilinear form
defined as

(x1 ⊗ x2)(y1, y2) = ⟨x1, y1⟩H1⟨x2, y2⟩H2

for any (y1, y2) ∈ H1 ×H2.

Correspondingly, we may also define the tensor product space.

Definition 2.14 (Tensor product space). The tensor product space H1 ⊗ H2 is the
completion of the space

A =


J∑

j=1

x1j ⊗ x2j

∣∣∣∣∣x1j ∈ H1, x2j ∈ H2, J ∈ N

 .

with respect to the norm induced by the inner product⟨
J∑

j=1

x1j ⊗ x2j ,

K∑
k=1

y1k ⊗ y2k

⟩
A

=

J∑
j=1

K∑
k=1

⟨x1j , y1k⟩H1⟨x2j , y2k⟩H2 .

Interestingly, the tensor product can be viewed as an operator between two Hilbert
spaces. That is, for each pair of elements (x1, x2) ∈ H1 × H2, we define the operator
Ax1,x2 : H1 → H2 in the following way:

Ax1,x2 : H1 → H2

y1 7→ ⟨x1, y1⟩H1x2.

Incidentally, an operator defined in such a way is called a rank one operator. Indeed,
for any y1 ∈ H1 and y2 ∈ H2, we have that

⟨Ax1,x2(y1), y2⟩H2 =
⟨
⟨x1, y1⟩H1x2, y2

⟩
H2

= ⟨x1, y1⟩H1⟨x2, y2⟩H2

= (x1 ⊗ x2)(y1, y2).

We now have three distinct interpretations of the tensor product. For x1, y1 ∈ H1 and
x2, y2 ∈ H2, these are:

• General form. An element in the tensor product space,

x1 ⊗ x2 ∈ H1 ⊗H2.

• Operator form. An operator between two Hilbert spaces,

x1 ⊗ x2 : H1 → H2

y1 7→ ⟨x1, y1⟩H1x2.
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• Bilinear form. As per Definition 2.13,

x1 ⊗ x2 : H1 ×H2 → R

(y1, y2) 7→ ⟨x1, y1⟩H1⟨x2, y2⟩H2 .

Remark 2.2. As explained by Kokoszka and Reimherr (2017, Sec. 10.5, p. 227), tensors
are often thought of as generalisations of matrices and outer products. For example, in
Euclidean space, a matrix A ∈ Rn×m, formed by two vectors x1 ∈ Rn and x2 ∈ Rm

via A = x1x⊤
2 =: x1 ⊗ x2, can be viewed in at least three ways: 1) as a traditional

matrix in the space Rn ⊗ Rm = Rn×m; 2) as a linear operator in Euclidean space
A : Rn → Rm (or the reverse) by multiplying A from the left or right by a vector;
or 3) as a bilinear mapping A : Rn × Rm → R in the form of A(y1,y2) = y⊤

1 Ay2 =

y⊤
1 x1x⊤

2 y2 = (y⊤
1 x1)(y⊤

2 x2), for some y1 ∈ Rn and y2 ∈ Rm, arising often in the study
of quadratic forms.

For the last part of this introductory section on functional analysis, we discuss mea-
sures on Hilbert spaces, and in particular, a probability measure. Let H be a real Hilbert
space. As discussed earlier, we can define a metric on H using D(x, x′) = ∥x − x′∥H,
where the norm on H is the norm induced by the inner product. A collection Σ of
subsets of H is called a σ-algebra if ∅ ∈ Σ, S ∈ Σ implies its complement Sc ∈ Σ, and
Sj ∈ Σ, j ≥ 1 implies

∪∞
j=1 Sj ∈ Σ. The smallest σ-algebra containing all open subsets

of H is called the Borel σ-algebra, and its members the Borel sets. Denote by B(H) the
Borel σ-algebra of H.

Recall that a function ν : Σ → [0,∞] is called a measure if it satisfies

• Non-negativity: ν(S) ≥ 0 for all S in Σ;

• Null empty set: ν(∅) = 0; and

• σ-additivity: for all countable, mutually disjoint sets {Si}∞i=1,

ν

( ∞∪
i=1

Si

)
=

∞∑
i=1

ν(Si).

A measure ν on
(
H,B(H)

)
is called a Borel measure on H. We shall only concern

ourselves with finite Borel measures. In addition, if ν(H) = 1 then ν is a (Borel)
probability measure and the measure space

(
H,B(H), ν

)
is a (Borel) probability space.

Let (Ω, E ,P) be a probability space. We say that a mapping X : Ω → H is a random
element in H if X−1(B) ∈ E for every Borel set, i.e., X is a function such that for every
B ∈ B(H), its preimage X−1(B) = {ω ∈ Ω |X(ω) ∈ B} lies in E . This is simply a
generalisation of the definition of random variables in regular Euclidean space. From
this definition, we can also properly define random functions f in a Hilbert space of
functions F . In any case, every random element X induces a probability measure on H
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defined by
ν(B) = P

(
X−1(B)

)
= P

(
ω ∈ Ω|X(ω) ∈ B

)
= P(X ∈ B).

The measure ν is called the distribution of X. The density p of X is a measurable
function with the property that

P(X ∈ B) =

∫
X−1(B)

ω dP(ω) =
∫
B
p(x)dν(x).

Definition 2.15 (Mean vector). Let ν be a Borel probability measure on a real Hilbert
space H. Supposing that a random element X of H is integrable, that is to say

E∥X∥H =

∫
H
∥z∥H dν(z) < ∞,

then the unique element µ ∈ H satisfying

⟨µ, x⟩ =
∫
X
⟨z, x⟩X dν(z) = E⟨X,x⟩H

for all x ∈ H is called the mean vector.

Definition 2.16 (Covariance operator). Let ν be a Borel probability measure on a real
Hilbert space H. Suppose that a random element X of H is square integrable, i.e.,
E∥X∥2H < ∞, and let µ be the mean vector of X. Then the covariance operator C is
defined by the mapping

C : H → H

x 7→ E
[
⟨X − µ, x⟩H(X − µ)

]
.

The covariance operator C is also an element of H⊗H that satisfies

⟨C, x⊗ x′⟩H⊗H =

∫
H
⟨z − µ, x⟩H⟨z − µ, x′⟩H dν(z)

= E
[
⟨X − µ, x⟩H⟨X − µ, x′⟩H

]
for all x, x′ ∈ H.

From the definition of the covariance operator, we see that it induces a symmetric,
bilinear form, which we shall denote by Cov : H×H → R, through

⟨Cx, x′⟩H =
⟨

E
[
⟨X − µ, x⟩H(X − µ)

]
, x′
⟩
H

= E
[
⟨X − µ, x⟩H⟨X − µ, x′⟩H

]
=: Cov(x, x′).

Definition 2.17 (Gaussian vectors). A random element X is called Gaussian if ⟨X,x⟩H
has a normal distribution for all fixed x ∈ H. A Gaussian vector X is characterised by
its mean element µ ∈ H and its covariance C ∈ H ⊗H.
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Figure 2.1: A hierarchy of vector spaces2.

2.2 Reproducing kernel Hilbert space theory

The introductory section sets us up nicely to discuss the coveted reproducing kernel
Hilbert space. This is a subset of Hilbert spaces for which its evaluation functionals
are continuous (by definition, in fact). The majority of this section, apart from defining
RKHSs, is an exercise in persuading ourselves that each and every RKHS of functions can
be specified solely through its reproducing kernel. To begin, we consider a fundamental
linear functional on a Hilbert space of functions F , that assigns a value to f ∈ F for
each x ∈ X , called the evaluation functional.

Definition 2.18 (Evaluation functional). Let F be a vector space of functions f : X →
R, defined on a non-empty set X . For a fixed x ∈ X , the functional δx : F → R as
defined by δx(f) = f(x) is called the (Dirac) evaluation functional at x.

It is easy to see that evaluation functionals are always linear: δx(λf + g) = (λf +

g)(x) = λf(x) + g(x) = λδx(f) + δx(g) for λ ∈ R, f, g ∈ F real functions over X .
Humble as they may seem, the entirety of the evaluation functionals over the domain
X determines f uniquely, and thus are of great importance in understanding the space
F . Core topological properties like convergence are hinged on continuity, and it is
therefore important that evaluation functionals are continuous. As it turns out, RKHSs
by definition provide exactly this.

2Reproduced from the lecture slides of Dino Sejdinovic and Arthur Gretton entitled “Foundations
of Reproducing Kernel Hilbert Spaces: Advanced Topics in Machine Learning”, 2014. URL: http:
//www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_slides2_2014.pdf.
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Definition 2.19 (Reproducing kernel Hilbert space). A Hilbert space F of real-valued
functions f : X → R on a non-empty set X is called a reproducing kernel Hilbert space
if the evaluation functional δx : f 7→ f(x) is continuous (equivalently, bounded) on F ,
∀x ∈ X .

Continuity (boundedness) of evaluation functionals in an RKHS means that functions
that are close in RKHS norm imply that they are also close pointwise, since |δx(f) −
δx(g)| = |δx(f − g)| ≤ M∥f − g∥F for some real M > 0. Note that the converse is
not necessarily true. RKHSs are particularly well behaved in this respect, compared
to other Hilbert spaces, and this property in particular has desirable consequences for
a wide variety of applications, including nonparametric curve estimation, learning and
decision theory, and many more.

While the continuity condition by definition is what makes an RKHS, it is neither
easy to check this condition in practice, nor is it intuitive as to the meaning of its name.
In fact, there isn’t even any mention of what a reproducing kernel actually is. In order
to benefit from the desirable continuity property of RKHS, we should look at this from
another, more intuitive, perspective. By invoking the Riesz representation theorem, we
see that for all x ∈ X , there exists a unique element hx ∈ F such that

f(x) = δx(f) = ⟨f, hx⟩F ,∀f ∈ F

holds. Since hx itself is a function in F , it holds that for every x′ ∈ X there exists a
hx′ ∈ F such that

hx(x
′) = δx′(hx) = ⟨hx, hx′⟩F .

This leads us to the definition of a reproducing kernel of an RKHS—the very notion that
inspires its name.

Definition 2.20 (Reproducing kernels). Let F be a Hilbert space of functions over a
non-empty set X . A symmetric, bivariate function h : X × X → R is called a kernel,
and it is a reproducing kernel of F if h satisfies

• ∀x ∈ X , h(·, x) ∈ F ; and

• ∀x ∈ X , f ∈ F , ⟨f, h(·, x)⟩F = f(x) (the reproducing property).

In particular, for any x, x′ ∈ X ,

h(x, x′) = ⟨h(·, x), h(·, x′)⟩F .
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An important property for reproducing kernels of an RKHS is that they are positive
definite functions. That is, ∀λ1, . . . , λn ∈ R and ∀x1, . . . , xn ∈ X ,

n∑
i=1

n∑
j=1

λiλjh(xi, xj) ≥ 0.

Lemma 2.4 (Reproducing kernels of RKHSs are positive definite). Let h :X ×X → R be
a reproducing kernel for a Hilbert space F . Then h is a symmetric and positive-definite
function.

Proof.

n∑
i=1

n∑
j=1

aiajh(xi, xj) =
n∑

i=1

n∑
j=1

aiaj⟨h(·, xi), h(·, xj)⟩F

=

⟨
n∑

i=1

aih(·, xi),
n∑

j=1

ajh(·, xj)

⟩
F

=

∥∥∥∥∥
n∑

i=1

aih(·, xi)

∥∥∥∥∥
2

F

≥ 0 ■

Remark 2.3. In the kernel methods literature, a kernel h : X ×X → R is usually defined
as the inner product between inputs in feature space. That is, take ϕ : X → V, x 7→ ϕ(x),
where V is a Hilbert space. Then the kernel is defined as h(x, x′) = ⟨ϕ(x), ϕ(x′)⟩V , for
any x, x′ ∈ X . The space V is known as the feature space and the mapping ϕ the feature
map. In many mathematical models involving feature space mappings, elucidation of the
feature map and feature space is not necessary, and thus computation is made simpler
by the use of kernels (known as the kernel trick—Hofmann et al., 2008). Note that
kernels defined in this manner are positive definite, while in this thesis, we opt for a
more general definition allowing kernels to not necessarily be positive. The relevance of
this generality will be appreciated when we discuss reproducing kernel Kreĭn spaces in
Section 2.3.

Introducing the following definition of the kernel matrix (also known as the Gram
matrix) is useful at this point.

Definition 2.21 (Kernel matrix). Let {x1, . . . , xn} be a sample of points, where each
xi ∈ X , and h a kernel over X . Define the kernel matrix H for h as the n × n matrix
with (i, j) entries equal to h(xi, xj).

Obviously, H is a positive definite matrix if the kernel that defines it is positive
definite: a⊤Ha =

∑n
i=1

∑n
j=1 aiajh(xi, xj) ≥ 0 for any choice of a1, . . . , an ∈ R and

x1, . . . , xn ∈ X .
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So far, we have seen that reproducing kernels of an RKHS are positive-definite func-
tions, and that RKHSs are Hilbert spaces with continuous evaluation functionals, but
one might wonder what exactly the relationship between a reproducing kernel and an
RKHS is. We assert the following:

• For every RKHS F of functions over a set X , there corresponds a unique, positive-
definite reproducing kernel h : X × X → R, and vice-versa. That is, a Hilbert
space is an RKHS if it possesses a unique, reproducing kernel.

• For every positive-definite function h : X × X → R, there corresponds a unique
RKHS F that has h as its reproducing kernel.

Pictorially, the following relationships are established:

Reproducing
kernels

P.d. func-
tions RKHS

Theorem 2.6

Theorem 2.5Lemma 2.4

Figure 2.2: Relationships between positive definite functions, reproducing kernels, and
RKHSs.

In essence, the notion of positive-definite functions and reproducing kernels of RKHSs
are equivalent, and that there is a bijection between the set of positive-definite kernels
and the set of RKHSs. The rest of this section is a consideration of these assertions,
addressed by the two theorems that follow.

Theorem 2.5 (RKHS uniqueness). Let F be a Hilbert space of functions over X . F is
an RKHS if and only if F has a reproducing kernel h : X ×X → R, and that h is unique
to F .

Proof. First we tackle existence, i.e. we prove that F is an RKHS if and only if F has
a reproducing kernel. Suppose F is a Hilbert space of functions, and h : X × X → R is
a reproducing kernel for F . Then, choosing δ = ϵ/∥h(·, x)∥F , for any f ∈ F such that
∥f − g∥F < δ, we have

∣∣δx(f)− δx(g)
∣∣ = ∣∣(f − g)(x)

∣∣
=
∣∣⟨f − g, h(·, x)⟩F

∣∣ (reproducing property)

≤ ∥h(·, x)∥F ∥f − g∥F (Cauchy-Schwarz)

= ϵ.
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Thus, the evaluation functional is (uniformly) continuous on F , and by definition, F is
an RKHS. Now suppose that F is an RKHS, and h is a kernel function over X ×X . The
reproducing property of h is had by following the argument preceding Definition 2.20.

As for uniqueness, assume that the RKHS F has two reproducing kernels h1 and h2.
Then, ∀f ∈ F and ∀x ∈ X ,

⟨f, h1(·, x)− h2(·, x)⟩F = f(x)− f(x) = 0.

In particular, if we take f = h1(·, x) − h2(·, x), we obtain ∥h1(·, x) − h2(·, x)∥2F = 0.
Thus, h1 = h2. ■

Theorem 2.6 (Moore-Aronszajn). If h : X ×X → R is a positive-definite function then
there exists a unique RKHS whose reproducing kernel is h.

Sketch proof. Most of the details here have been omitted, except for the parts which we
feel are revealing as to the properties of an RKHS. For a complete proof, see Gu (2013,
Thm. 2.3) or Berlinet and Thomas-Agnan (2004, Thm. 3). Start with the linear space

F0 =

{
fn : X → R

∣∣∣ fn =
n∑

i=1

wih(·, xi), xi ∈ X , wi ∈ R, n ∈ N

}

and endow this linear space with the following inner product:⟨
n∑

i=1

wih(·, xi),
m∑
j=1

w′
jh(·, x′j)

⟩
F0

=

n∑
i=1

m∑
j=1

wiw
′
jh(xi, x

′
j).

It may be shown that this is indeed a valid inner product satisfying the conditions laid
in Definition 2.1. At this point, the reproducing property is already had:

⟨
fn, h(·, x)

⟩
F0

=

⟨
n∑

i=1

wih(·, xi), h(·, x)

⟩
F0

=

n∑
i=1

wih(x, xi)

= fn(x),

for any fn ∈ F0.

Let F be the completion of F0 with respect to this inner product. In other words,
define F to be the set of functions f : X → R for which there exists a Cauchy sequence
{fn}∞n=1 in F0 converging pointwise to f ∈ F . The inner product for F is defined to be

⟨f, f ′⟩F = lim
n→∞

⟨fn, f ′
n⟩F0 .
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The sequence {⟨fn, f ′
n⟩F0}∞n=1 is convergent and does not depend on the sequence chosen,

but only on the limits f and f ′ (Berlinet and Thomas-Agnan, 2004, Lemma 5). We may
check that this indeeds defines a valid inner product. The reproducing property carries
over to the completion:

⟨f, h(·, x)⟩F = lim
n→∞

⟨fn, h(·, x)⟩F0

= lim
n→∞

fn(x)

= f(x).

To prove uniqueness, let G be another RKHS with reproducing kernel h. F has to be
a closed subspace of G, since h(·, x) ∈ G for all x ∈ X , and because G is complete and
contains F0 and hence its completion. Using the orthogonal decomposition theorem, we
have G = F ⊕F⊥, i.e. any g ∈ G can be decomposed as g = f + f c, f ∈ F and f c ∈ F⊥.
For each element g ∈ G we have that, for all x ∈ X ,

g(x) = ⟨g, h(·, x)⟩G
=
⟨
f + f c, h(·, x)

⟩
G

=
⟨
f, h(·, x)

⟩
G +

�������:0⟨
f c, h(·, x)

⟩
G

= f(x)

so therefore g ∈ F too. It must be that F ≡ G. ■

A consequence of the above proof is that we can show that any function f in an
RKHS F with kernel h can be written in the form f(x) =

∑n
i=1 h(x, xi)wi, with some

(w1, . . . , wn) ∈ Rn, n ∈ N. More precisely, F is the completion of the space G =

span{h(·, x) |x ∈ X} endowed with the inner product as stated in Section 2.2.

2.3 Reproducing kernel Kreĭn space theory

In this section, we review elementary Kreĭn and reproducing kernel Kreĭn space (RKKS)
theory, and comment on the similarity and differences between it and RKHSs. Kreĭn
spaces are linear spaces endowed with a Hilbertian topology, characterised by an inner
product which is non-positive.

Definition 2.22 (Negative and indefinite inner products). Let ⟨·, ·⟩F be an inner product
of a vector space F , as per Definition 2.1. An inner product is said to be negative-definite
if for all f ∈ F , ⟨f, f⟩F ≤ 0. It is indefinite if it is neither positive- nor negative-definite.
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Definition 2.23 (Kreĭn space). An inner product space
(
F , ⟨·, ·⟩F

)
is a Kreĭn space if

there exists two Hilbert spaces
(
F+, ⟨·, ·⟩F+

)
and

(
F−, ⟨·, ·⟩F−

)
spanning F such that

• All f ∈ F can be decomposed into f = f+ + f−, where f+ ∈ F+ and f− ∈ F−.

• This decomposition is orthogonal, i.e. F+ ∩ F− = {0}, and ⟨f+, f ′
−⟩F = 0 for any

f, f ′ ∈ F , with the inner product on F defined below.

• ∀f, f ′ ∈ F , ⟨f, f ′⟩F = ⟨f+, f ′
+⟩F+ − ⟨f−, f ′

−⟩F− .

Remark 2.4. Any Hilbert space is also a Kreĭn space, which is seen by taking F− = {0}
in the above Definition 2.23.

Let P be the projection of the Kreĭn space F onto F+, and Q = I −P the projection
onto F−, where I is the identity map. These are caleld the fundamental projections of
F . We shall refer to F+ as the positive subspace, and F− as the negative subspace. These
monikers stem from the fact that for all f, f ′ ∈ F , ⟨Pf, Pf ′⟩F+ ≥ 0 while ⟨Qf,Qf ′⟩F− ≤
0. We introduce the notation ⊖ to refer to the Kreĭn space decomposition: F = F+⊖F−.
There is then a notion of an associated Hilbert space.

Definition 2.24 (Associated Hilbert space). Let F be a Kreĭn space with decomposition
into Hilbert spaces F+ and F−. Denote by FH the associated Hilbert space defined by
FH = F+ ⊕F−, with inner product

⟨f, f ′⟩FH = ⟨f+, f ′
+⟩F+ + ⟨f−, f ′

−⟩F− ,

for all f, f ′ ∈ F .

The associated Hilbert space can be found via the linear operator J = P −Q called
the fundamental symmetry. That is, a Kreĭn space F can be turned into its associated
Hilbert space by using the positive-definite inner product of the associated Hilbert space
as ⟨f, f ′⟩FH = ⟨f, Jf ′⟩F , for all f, f ′ ∈ F . The converse is true too: starting from a
Hilbert space FH and an operator J , the vector space endowed with the inner product
⟨f, f ′⟩F = ⟨f, Jf ′⟩FH , for all f, f ′ ∈ F , is a Kreĭn space.

We realise that for a Kreĭn space F , |⟨f, f⟩F | ≤ ∥f∥2FH
for all f ∈ F . As such, we say

that FH majorises F , and in fact it is the smallest Hilbert space to do so. The strong
topology on F is defined to be the topology arising from the norm of FH, and this does
not depend on the decomposition chosen (Ong et al., 2004). Now, we define an RKKS.

Definition 2.25 (Reproducing kernel Kreĭn space). A Kreĭn space F of real-valued
functions f : X → R on a non-empty set X is called a reproducing kernel Kreĭn space if
the evaluation functional δx : f 7→ f(x) is continuous on F , ∀x ∈ X , endowed with its
strong topology (i.e. the topology of its associated Hilbert space FH).
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One might wonder whether the uniqueness theorem (Theorem 2.5) holds for RKKS.
Indeed, for every RKKS F of functions over a set X , there corresponds a unique repro-
ducing kernel h : X × X → R.

Lemma 2.7 (Uniqueness of kernel for RKKS). Let F be an RKKS of functions over a
set X , with F = F+ ⊖ F−. Then, F+ and F− are both RKHS with kernel h+ and h−,
and the kernel h = h+ − h− is a unique, symmetric, reproducing kernel for F .

Proof. Since F is an RKKS, evaluation functionals are continuous on F with respect to
topology of the associated Hilbert space FH = F+ ⊕ F−. Therefore, FH is an RKHS,
and so too are F+ and F− with respective kernels h+ and h−.

Furthermore, h(·, x) ∈ F since h+(·, x) ∈ F+ and h−(·, x) ∈ F− for some x ∈ X .
Then, for any f ∈ F ,

⟨f, h(·, x)⟩F = ⟨f, h+(·, x)⟩F − ⟨f, h−(·, x)⟩F

= ⟨f+, h+(·, x)⟩F+ −
���������:0
⟨f−, h+(·, x)⟩F−

−
���������:0
⟨f+, h−(·, x)⟩F+ + ⟨f−, h−(·, x)⟩F−

= f+(x) + f−(x)

= f(x)

The last two lines are achieved by linearity of evaluation functionals (δx(f+) + δx(f−) =

δx(f++f−)), and the fact that f = f++f− (by the Kreĭn space decomposition). We have
that h = h+ − h− is a reproducing kernel for F . Uniqueness follows as a consequence of
the non-degeneracy condition of the respective inner products for F+ and F−. ■

Remark 2.5. Unlike reproducing kernels of RKHSs, reproducing kernels of RKKSs may
not be positive definite.

The analogue of the Moore-Aronszajn theorem holds partially for RKKS, up to
uniqueness. That is, there is at least one associated RKKS with kernel h : X × X → R
if and only if h can be decomposed as the difference between two positive kernels h+

and h− over X , i.e. h = h+ − h−. The proof of this statement is rather involved, so is
omitted in the interest of maintaining coherence to the discussion at hand. This subject
has been studied by various authors; one may refer to works by Alpay (1991, Thm. 2 &
E.g. in Sec. 4), and Mary (2003, Thm. 2.28).

The take-away message as we close this section is that there is no bijection, but a
surjection, between the set of RKKS and the set of bivariate, symmetric functions over
X × X . In any case, Hilbertian topology applies to Kreĭn spaces via the associated
Hilbert space, and in particular, RKKS provide a functional space for which evaluation
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functionals are continuous. The motivation for the use of Kreĭn spaces will become
clear when constructing function spaces out of (scaled) building block RKHS later in
Section 2.5.

2.4 RKHS building blocks

This section describes what we refer to as the “building block” RKHSs of functions. In
the context of regression modelling using I-priors, we may assume that the regression
function lies in any one of these single RKHSs, although it may be more appropriate
to consider function spaces built upon these RKHSs for more complex models. I-priors
will be presented in detail in Chapter 3, but in advance of the forthcoming discussion,
the plots in this section are intended to give an impression of sample I-prior paths from
the respective RKHSs. Construction of new function spaces from these building block
RKHSs will be discussed in the next section.

2.4.1 The RKHS of constant functions

The vector space of constant functions F over a set X contains the functions f : X → R
such that f(x) = cf ∈ R, ∀x ∈ X . These functions would be useful to model an overall
average, i.e. an “intercept effect”. The space F can be equipped with a norm to form
an RKHS, as shown in the following proposition.

Proposition 2.8 (RKHS of constant functions). The space F as described above en-
dowed with the norm ∥f∥F = |cf | forms an RKHS with the reproducing kernel h :

X × X → R as defined, rather simply, by

h(x, x′) = 1,

known as the constant kernel.

Proof. If F is an RKHS with kernel h as described, then F is spanned by the functions
h(·, x) = 1, so it is clear that F consists of constant functions over X . On the other hand,
if the space F is equipped with the inner product ⟨f, f ′⟩F = cfcf ′ , then the reproducing
property follows, since ⟨f, h(·, x)⟩F = cf = f(x). Hence, ∥f∥F =

√
⟨f, f⟩F = |cf |. ■

Remark 2.6. In I-prior modelling, it is simpler to consider the intercept of a regression
model as a parameter to be estimated, rather than a separate function within an RKHS
of constant functions for which its posterior is to be estimated. See Section 4.2.1 (p.
110) in Chapter 4 for further details.
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Sample constant I−prior paths

Figure 2.3: Sample I-prior paths from the RKHS of constant functions.

2.4.2 The canonical (linear) RKHS

Consider a function space F over X which consists of functions of the form fβ : X → R,
fβ : x 7→ ⟨x, β⟩X for some β ∈ R. Suppose that X ≡ Rp, then F consists of the linear
functions fβ(x) = x⊤β. More generally, if X is a Hilbert space, then its continuous dual
consists of elements of the form fβ = ⟨·, β⟩X by the Riesz representation theorem. We
can show that the continuous dual space of X is an RKHS which consists of these linear
functions.

Proposition 2.9 (Canonical RKHS). The continuous dual space of a Hilbert space X ,
denoted by X ∗, is an RKHS of linear functions over X of the form ⟨·, β⟩X , β ∈ X . Its
reproducing kernel h : X × X → R is defined by

h(x, x′) = ⟨x, x′⟩X .

Proof. Define fβ := ⟨·, β⟩X for some β ∈ X . Clearly this is linear and continuous, so
fβ ∈ X ∗, and so X ∗ is a Hilbert space containing functions f : X → R of the form
fβ(x) = ⟨x, β⟩X . By the Riesz representation theorem, every element of X ∗ has the form
fβ. It also gives us a natural isometric isomorphism such that the following is true:

⟨β, β′⟩X = ⟨fβ, fβ′⟩X ∗ .

Hence, for any fβ ∈ X ∗,

fβ(x) = ⟨x, β⟩X
= ⟨fx, fβ⟩X ∗

=
⟨
⟨·, x⟩X , fβ

⟩
X ∗ .

Thus, h : X × X → R as defined by h(x, x′) = ⟨x, x′⟩X is the reproducing kernel of
X ∗. ■
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In many other literature, the kernel h(x, x′) = ⟨x, x′⟩X is also known as the linear
kernel. The use of the term ‘canonical’ is fitting not just due to the relation between a
Hilbert space and its continuous dual space. Let ϕ : X → V be the feature map from the
space of covariates (inputs) to some feature space V. Suppose both X and V are Hilbert
spaces, then a kernel, as per Remark 2.3, is defined as h(x, x′) = ⟨ϕ(x), ϕ(x′)⟩V . Taking
the feature map to be ϕ(x) = ⟨·, x⟩X , we can prove the reproducing property to obtain
h(x, x′) = ⟨x, x′⟩X , which implies ϕ(x) = h(·, x), and thus ϕ is the canonical feature map
(Steinwart and Christmann, 2008, Lemma 4.19).

0

0
x

f(x
)

Sample linear I−prior paths

Figure 2.4: Sample I-prior paths from the canonical RKHS.

The origin of a Hilbert space may be arbitrary, in which case a centring may be
appropriate. We define the centred canonical RKHS as follows.

Definition 2.26 (Centred canonical RKHS). Let X be a Hilbert space, P be a probabil-
ity measure over X , and µ ∈ X be the mean of a random element X ∈ X . Define (X−µ)′,
the continuous dual space of X −µ, to be the centred canonical RKHS. (X −µ)′ consists
of the centred linear functions fβ(x) = ⟨x− µ, β⟩X , for β ∈ X , such that E[fβ(X)] = 0.
The reproducing kernel of (X − µ)′ is

h(x, x′) = ⟨x− µ, x′ − µ⟩X .

That the centred canonical RKHS consists of zero-meaned functions, E[fβ(X)] = 0,
consider the following argument:

E[fβ(X)] = E⟨X − µ, β⟩X
= E⟨X,β⟩X − ⟨µ, β⟩X ,

and since E⟨X,β⟩X = ⟨µ, β⟩X for any β ∈ X , the results follows.
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Remark 2.7. In practice, the probability measure P over X is unknown, so we find it
useful to use the empirical distribution over X instead, so that X is centred by the
sample mean µ̂ = 1

n

∑n
i=1 xi.

2.4.3 The fractional Brownian motion RKHS

Brownian motion, which also goes by the name Wiener process, has been an inquisitive
subject in the mathematical sciences, and here, we describe a function space motivated
by a generalised version of Brownian motion paths.

Suppose Bγ(t) is a continuous-time Gaussian process on [0, T ], i.e. for any finite set
of indices t1, . . . , tk, where each tj ∈ [0, T ],

(
Bγ(t1), . . . , Bγ(tk)

)
is a multivariate normal

random variable. Bγ(t) is said to be a fractional Brownian motion (fBm) if E[Bγ(t)] = 0

for all t ∈ [0, T ] and

Cov
(
Bγ(t), Bγ(s)

)
=

1

2

(
|t|2γ + |s|2γ − |t− s|2γ

)
∀t, s ∈ [0, T ],

where γ ∈ (0, 1) is called the Hurst index, Hurst parameter or even Hurst coefficient.
Introduced by Mandelbrot and Ness (1968), fBms are a generalisation of Brownian mo-
tion. The Hurst parameter plays two roles: 1) it describes the raggedness of the resultant
motion, with higher values leading to smoother motion; and 2) it determines the type
of process the fBm is, as past increments of Bγ(t) are weighted by (t − s)γ−1/2. When
γ = 1/2 exactly, the fBm is a standard Brownian motion and its increments are inde-
pendent; when γ > 1/2 (resp. γ < 1/2) its increments are positively (resp. negatively)
correlated.

Now, let X be a Hilbert space. Schoenberg (1937, Thm. 3) has shown that, for
0 < γ ≤ 1, there exists a Hilbert space V and a function ϕγ : X → V such that
∀x, x′ ∈ X , ∥∥ϕγ(x)− ϕγ(x

′)
∥∥
V = ∥x− x′∥γX .

Using the polarisation identity, we find that the kernel of the RKHS with feature space
V and feature map ϕγ defines a kernel function h : X × X → R identical to the fBm
covariance kernel.

Definition 2.27 (Fractional Brownian motion RKHS). The fractional Brownian mo-
tion (fBm) RKHS F is the space of functions on the Hilbert space X possessing the
reproducing kernel hγ : X × X → R defined by

hγ(x, x
′) =

⟨
ϕγ(x), ϕγ(x

′)
⟩
V =

1

2

(
∥x∥2γX + ∥x′∥2γX − ∥x− x′∥2γX

)
,

which depends on the Hurst coefficient γ ∈ (0, 1). We shall reference this space as the
fBm-γ RKHS.
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Remark 2.8. When γ = 1, by the polarisation identity we get h(x, x′) = ⟨x, x′⟩X , which
is the (reproducing) kernel of the canonical RKHS.

From its construction, it is clear that the fBm kernel is positive definite, and thus
defines an RKHS. That the fBm RKHS describes a space of functions is proved in Cohen
(2002), who studied this space in depth. It is also noted in the collection of examples of
Berlinet and Thomas-Agnan (2004, Sec 3.3, E.g. 3, p. 71 & Sec 7.4, E.g. 20, p. 319).

The Hurst coefficient γ controls the “smoothness” of the functions in the RKHS. We
can talk about smoothness in the context of Hölder continuity of functions.

Definition 2.28 (Hölder condition). A function f over a set (X , ∥·∥X ) is said to be
Hölder continuous of order 0 < a ≤ 1 if there exists an M > 0 such that ∀x, x′ ∈ X ,

|f(x)− f(x′)| ≤ M∥x− x′∥a.

Functions in the Hölder space Ck,a(X ), where k ≥ 0 is an integer, consists of those
functions over X having continuous derivatives up to order k and such that the k’th
partial derivatives are Hölder continuous of order a. Unlike realisations of actual fBm
paths with Hurst index γ, which are well-known to be almost surely Hölder continuous of
order less than γ (Embrechts and Maejima, 2002, Thm. 4.1.1), functions in its namesake
RKHS are strictly smoother.

Proposition 2.10 (Hölder smoothness of fBm-γ RKHS functions). The fBm-γ RKHS
F of functions over (X , ∥·∥X ) are Hölder continuous of order γ.

Proof. For some f ∈ F we have f(x) = ⟨f, h(·, x)⟩F by the reproducing property of the
kernel h of F . It follows from the Cauchy-Schwarz inequality that for any x, x′ ∈ X ,

|f(x)− f(x′)| = |⟨f, hγ(·, x)− hγ(·, x′)⟩F |

≤ ∥f∥F
∥∥hγ(·, x)− hγ(·, x′)

∥∥
F

= ∥f∥F ∥x− x′∥γX ,

since

∥∥hγ(·, x)− hγ(·, x′)
∥∥2
F =

∥∥hγ(·, x)∥∥2F +
∥∥hγ(·, x′)∥∥2F − 2⟨hγ(·, x), hγ(·, x′)⟩F

= hγ(x, x) + hγ(x
′, x′)− 2hγ(x, x

′)

= ∥x∥2γX + ∥x′∥2γX −
(
∥x∥2γX + ∥x′∥2γX − ∥x− x′∥2γX

)
= ∥x− x′∥2γX ,

and thus proving the proposition. ■
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The span of the kernels is dense in F (see paragraph at the end of Theorem 2.6), and
it is interesting to note that the basis functions h(·, x) are smoother still.

Proposition 2.11 (Hölder smoothness of fBm-γ basis functions). For 0 < γ ≤ 1/2 and
z ∈ X , the function hγ(·, z) : X → R is Hölder continuous of order 2γ.

Proof. Following the triangle inequalities (2.2) and (2.3), for any x, x′ ∈ X , we have that

∣∣hγ(z, x)− hγ(z, x
′)
∣∣ = 1

2

∣∣∣���∥z∥2γX + ∥x∥2γX − ∥z − x∥2γX −���∥z∥2γX − ∥x′∥2γX + ∥z − x′∥2γX
∣∣∣

≤ 1

2

∣∣∣∥z − x∥2γX − ∥z − x′∥2γX
∣∣∣+ 1

2

∣∣∣∥x∥2γX − ∥x′∥2γX
∣∣∣

≤ 1

2

∣∣∣���∥z∥2γX + ∥x∥2γX −���∥z∥2γX − ∥x′∥2γX
∣∣∣+ 1

2

∣∣∣∥x∥2γX − ∥x′∥2γX
∣∣∣

≤
∣∣∣∥x∥2γX − ∥x′∥2γX

∣∣∣
≤ ∥x− x′∥2γX . ■

Remark 2.9. The above proposition can also be proven for 1/2 < γ < 1, for which Hölder
smoothness has to be defined for orders 1 < a ≤ 2. See (Bergsma, 2018, Lemma 9) for
details.
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Sample fBm I−prior paths (Hurst = 0.3)
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Sample fBm I−prior paths (Hurst = 0.7)

Figure 2.5: Sample I-prior paths from the fBm RKHS with varying Hurst coefficients.
Note that the fBm-γ RKHS contains functions that are rougher than these I-prior paths
as a consequence of Proposition 2.11 and the fact that I-prior realisations are finite
combinations of the basis functions hη(·, x) (c.f. Equation 3.7, p. 99).
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An undesirable property of fBm-γ RKHS being spanned by the functions hγ(·, x) is
that f(0) = 0 for all f ∈ F . We define the centred fBm RKHS as follows.

Definition 2.29 (Centred fBm RKHS). Let X be a Hilbert space, P be a probability
measure over X , and µ ∈ X be the mean with respect to this probability measure. The
kernel h̄γ : X × X → R defined by

h̄γ(x, x
′) =

1

2
E
[
∥x−X∥2γX + ∥x′ −X ′∥2γX − ∥x− x′∥2γX − ∥X −X ′∥2γX

]
is the reproducing kernel of the centred fBm-γ RKHS, which consists of functions f in
the fBm-γ RKHS such that E[f(X)] = 0. In the above definition, X,X ′ ∼ P are two
independent copies of a random vector X ∈ X .

Remark 2.10. Again, when γ = 1, we get the reduction

h̄γ=1(x, x
′) =

1

2
E
[
∥x−X∥2X + ∥x′ −X ′∥2X − ∥x− x′∥2X − ∥X −X ′∥2X

]
=

1

2
E
[
⟨X,X⟩X + ⟨X ′, X ′⟩X + 2⟨x, x′⟩X − 2⟨x,X⟩X − 2⟨x′, X ′⟩X

]
= ⟨µ, µ⟩X + ⟨x, x′⟩X − ⟨x, µ⟩X − ⟨µ, x′⟩X
= ⟨x− µ, x′ − µ⟩X ,

which is the (reproducing) kernel of the centred canonical RKHS.

Remark 2.11. For posterity, a general centring of any (positive-definite) kernel h : X ×
X → R can be achieved via

h̄(x, x′) = h(x, x′)− E[h(x,X ′)]− E[h(X,x′)] + E[h(X,X ′)],

where expectations are taken for the random elements X,X ′ iid∼ P, a probability measure
over X . This centred kernel gives rise to the centred RKHS F̄ of centred functions
E[f(X)], f ∈ F̄ . As per Remark 2.7, the empirical distribution of P can be used to
approximate the unknown, true P.

2.4.4 The squared exponential RKHS

The squared exponential (SE) kernel function is indeed known to be the default ker-
nel used for Gaussian process regression in machine learning. It is a positive definite
function, and hence defines an RKHS. The definition of the SE RKHS is as follows.

Definition 2.30 (Squared exponential RKHS). The squared exponential (SE) RKHS
F of functions over some set X ⊆ Rp equipped with the 2-norm ∥·∥2 is defined by the
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positive definite kernel hl : X × X → R

hl(x, x
′) = exp

(
−∥x− x′∥22

2l2

)
.

The real-valued parameter l > 0 is called the lengthscale parameter, and is a smoothing
parameter for the functions in the RKHS.

It is known by many other names, including the Gaussian kernel, due to its semblance
to the kernel of the Gaussian pdf. Especially in the machine learning literature, the term
Gaussian radial basis functions (RBF) is used, and commonly the simpler parameterisa-
tion γ = (2l2)−1 is utilised. Duvenaud (2014) remarks that “exponentiated quadratic”
is a more aptly descriptive name for this kernel.

Despite being used extensively for learning algorithms using kernels, an explicit study
of the RKHS defined by the SE kernel was not done until recently by Steinwart et al.
(2006). In that work, the authors describe the nature of real-valued functions in the SE
RKHS by considering a a real restriction on the SE RKHS of functions over complex
values. Their derivation of an orthonormal basis of such an RKHS proved the SE kernel
to be the reproducing kernel for the SE RKHS.
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Sample SE I−prior paths (l = 0.1)

Figure 2.6: Sample paths from the SE RKHS with varying values for the lengthscale.

SE kernels are known to be “universal”. That is, it satisfies the following definition
of universal kernels is due to Micchelli et al. (2006).
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Definition 2.31 (Universal kernel). Let C(X ) be the space of all continuous, complex-
valued functions f : X → C equipped with the maximum norm ∥·∥∞, and denote K(X )

as the space of kernel sections span{h(·, x)|x ∈ X}, where here, h is a complex-valued
kernel function. A kernel h is said to be universal if given any compact subset Z ⊂ X ,
any positive number ϵ and any function f ∈ C(Z), there is a function g ∈ K(Z) such
that ∥f − g∥Z ≤ ϵ.

The consequence of universality vis-à-vis regression modelling is that any (continuous)
regression function f may be approximated very well by a function f̂ belonging to the SE
RKHS, and these two functions can get arbitrarily close to each other in the maximum
norm sense. This, together with the convenient computational advantages that the SE
kernel brings (Raykar and Duraiswami, 2007), is a testament to the popularity of SE
kernels, especially in machine learning methods.

In a similar manner to the two previous subsections, we may also derive the centred
SE RKHS.

Definition 2.32 (Centred SE RKHS). Let X ⊆ Rp be equipped with the 2-norm ∥·∥2,
and let P denote the distribution over X . Assuming integrability of h(x,X), for any
x ∈ X and a random element X ∈ X , the centred squared exponential (SE) RKHS (with
lengthscale l) of functions over X is defined by the positive definite kernel h : X ×X → R

h(x, x′) = e−
∥x−x′∥22

2l2 − E e−
∥x−X′∥22

2l2 − E e−
∥X−x′∥22

2l2 + E e−
∥X−X′∥22

2l2 ,

where X,X ′ ∼ P are two independent random elements of X . This ensures that
E[f(X)] = 0 for any f in this RKHS.

2.4.5 The Pearson RKHS

In all of the previous RKHSs of functions, the domain X was taken to be some Euclidean
space. The Pearson RKHS is a space of functions whose domain X is a finite set. Let P
be a probability measure over the finite set X . The Pearson RKHS is defined as follows.

Definition 2.33 (Pearson RKHS). The Pearson RKHS is the RKHS of functions over
a finite set X defined by the reproducing kernel

h(x, x′) =
δxx′

P(X = x)
− 1,

where X ∼ P and δ is the Kronecker delta.
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Figure 2.7: Sample I-prior “paths” from the Pearson RKHS. These are represented as
points over a finite set. Similarly coloured points are from the same “path”, and since
they are zero-mean functions, they sum to zero.

The Pearson RKHS contains functions which are centred, and has the desirable prop-
erty that the contribution of f(x)2 (the square of f(x)) to the squared norm of f is
proportional to P(X = x).

Proposition 2.12 (Mean and variance of functions in a Pearson RKHS). Let F be the
Pearson RKHS of functions over a finite set X . Then,

F = {f : X → R | E[f(X)] = 0}

with
∥f∥2F = Var[f(X)] =

∑
x∈X

f(x)2 P(X = x), ∀f ∈ F .

Proof. Write px = P(X = x). The set of functions {h(·, x) |x ∈ X} form a basis for F ,
and thus each f ∈ F can be written as f(x) =

∑
x′∈X wx′h(x, x′) for some scalars wi ∈ R,

i ∈ X . But E[h(X,x′)] = E[δXx′ ]/px′ − 1 = px′/px′ − 1 = 0, and thus E[f(X)] = 0.
Conversely, suppose f : X → R is such that E[f(X)] = 0. Taking wx = f(x)px, we see
that ∑

x′∈X
wx′h(x, x′) =

wx

px
−
∑
x′∈X

wx′

=
f(x)��px

��px
−

�������*
E[f(X)] = 0∑

x′∈X
f(x′)px′

= f(x)

and thus h(·, x) spans F so f ∈ F .
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The second part is proved as follows. Noting that with the choice wx = pxf(x) and
due to the reproducing property of h for the RKHS F , the squared norm is

∥f∥2F = ⟨f, f⟩F =

⟨∑
x∈X

wxh(·, x),
∑
x′∈X

wx′h(·, x′)

⟩
F

=
∑
x∈X

∑
x′∈X

wxwx′
⟨
h(·, x), h(·, x′)

⟩
F

=
∑
x∈X

∑
x′∈X

wxwx′h(x, x′)

=
∑
x∈X

f(x)wx

=
∑
x∈X

f(x)2 P(X = x),

and this is equal to the variance of f(X). ■

2.5 Constructing RKKSs from existing RKHSs

The previous section outlined all of the basic RKHSs of functions that will form the
building blocks when constructing more complex function spaces. We will see, at the
outset, that sums of kernels are kernels and products of kernels are also kernels. This
provides us a platform for constructing new function spaces from existing ones. To be
more flexible in the specification of these new function spaces, we do not restrict ourselves
to positive-definite kernels only, thereby necessitating us to use the theory of RKKSs.

2.5.1 Sums, products and scaling of RKHS

Sums of positive definite kernels are also positive definite kernels, and the product of
positive definite kernel is a positive definite kernel. They each, in turn, are associated
with an RKHS that is defined by the sum of kernels and product of kernels, respectively.
The two lemmas below formalise these two facts.

Lemma 2.13 (Sum of kernels). If h1 and h2 are positive-definite kernels on X1 and X2

respectively, then h = h1 + h2 is a positive-definite kernel on X1 ×X2. Moreover, denote
F1 and F2 the RKHS defined by h1 and h2 respectively. Then F = F1⊕F2 is an RKHS
defined by h = h1 + h2, where

F1 ⊕F2 = {f : X1 ×X2 → R | f = f1 + f2, f1 ∈ F1 and f2 ∈ F2}.

For all f ∈ F ,
∥f∥2F = min

f1+f2=f

{
∥f1∥2F1

+ ∥f2∥2F2

}
.
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Proof. That h1+h2 is a positive-definite kernel should be obvious, as the sum of two pos-
itive definite functions is also positive definite. For a proof of the remaining statements,
see Berlinet and Thomas-Agnan (2004, Thm. 5). ■

Lemma 2.14 (Products of kernels). Let F1 and F2 be two RKHSs of functions over X1

and X2, with respective reproducing kernels h1 and h2. Then, the tensor product space
F1 ⊗F2 is an RKHS with reproducing kernel h = h1h2 on X1 ×X2.

Proof. Fix n ∈ N, and let H1 and H2 be the kernel matrices for h1 and h2 respectively.
Since these kernel matrices are symmetric and positive definite by virtue of h1 and h2

being symmetric and positive-definite functions, we can write H1 = A⊤A and H1 =

B⊤B for some matrices A and B: perform an (orthogonal) eigendecomposition of each
of the kernel matrices, and take square roots of the eigenvalues. Let H be the kernel
matrix for h = h1h2. With xi = (xi1, xi2), its (i, j) entries are

h(xi, xj) = h1(xi1, xi2)h2(xj1, xj2)

= (A⊤A)ij (B⊤B)ij

=

n∑
k=1

aikajk

n∑
l=1

bilbjl,

where we have denoted aij and bij to be the (i, j)’th entries of A and B respectively
Then,

n∑
i=1

n∑
j=1

h(xi, xj) =

n∑
k=1

n∑
l=1

n∑
i=1

n∑
j=1

λiλjaikajkbilbjl

=
n∑

k=1

n∑
l=1

(
n∑

i=1

λiaikbil

) n∑
j=1

λjajkbjl


=

n∑
k=1

n∑
l=1

(
n∑

i=1

λiaikbil

)2

≥ 0

Again, for the remainder of the statement in the lemma, we refer to Berlinet and Thomas-
Agnan (2004, Thm. 13). ■

A familiar fact from linear algebra is realised here from Lemmas 2.13 and 2.14: 1) the
addition of positive-(semi)definite matrices is a positive-(semi)definite matrix; and 2) the
Hadamard product3 of two positive (semi-)definite matrices is a positive (semi-)definite
matrix.

3The Hadamard product is an element-wise multiplication of two matrices A and B of identical
dimensions, denoted A ◦ B. That is, (A ◦ B)ij = AijBij .
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The scale of an RKHS of functions F over a set X with kernel h may be arbitrary.
To resolve this issue, a scale parameter λ ∈ R for the kernel h may be introduced, which
will typically need to be estimated from the data. If h is a positive definite-kernel on
X × X , and λ ≥ 0 a scalar, then this yields a scaled RKHS Fλ = {λf | f ∈ F} with
reproducing kernel λh, where F is the RKHS defined by h.

Restricting λ to the positive reals is arbitrary and unnecessarily restrictive. Especially
when considering sums and products of scaled RKHSs, having negative scale parameters
also give additional flexibility. The resulting kernels from summation and/or multipli-
cation with negative kernels may no longer be positive definite, and in such cases, they
give rise to RKKSs instead.

Remark 2.12. Recall that an RKKS F of functions over X can be uniquely decomposed
as the difference between two RKHSs F+ and F−, and its associated Hilbert space FH

is the RKHS F+ ⊕ F−. It is important to note that both F and FH contain identical
functions over X , but different topologies. That is to say, functions that are close with
respect to the norm of F may not be close to each other in the norm of FH.

2.5.2 The polynomial RKKS

A polynomial construction based on a particular RKHS building block is considered
here. For example, using the canonical RKHS in the polynomial construction would
allow us to easily add higher order effects of the covariates x ∈ X . In particular, we only
require a single scale parameter in polynomial kernel construction.

Definition 2.34 (Polynomial RKKS). Let X be a Hilbert space. The kernel function
h : X ×X → R obtained through the d-degree polynomial construction of linear kernels
is

hλ(x, x
′) =

(
λ⟨x, x′⟩X + c

)d
,

where λ ∈ R is a scale parameter for the linear kernel, and c ∈ R is a real constant called
the offset. This kernel defines the polynomial RKKS of degree d. Note that if λ, c > 0

then the kernel is positive definite and thus defines an RKHS.

Write

hλ(x, x
′)F =

d∑
k=0

d!

k!(d− k)!
ck−dλk⟨x, x′⟩kX .

Evidently, as the name suggests, this is a polynomial involving the canonical kernel. In
particular, each of the k-powered kernels (i.e. ⟨x, x′⟩kX ) defines an RKHS of their own
(since these are merely products of kernels), and therefore the sum of these k-powered
kernels define the polynomial RKKS.
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The offset parameter influences trade-off between the higher-order versus lower-order
terms in the polynomial. It is sometimes known as the bias term.

Proposition 2.15. The polynomial RKKS F of real functions over X contains polyno-
mial functions of the form f(x) =

∑d
k=0 βkx

k.

Proof. By construction, F = F∅ ⊕
⊕d

i=1

⊗i
j=1Fj , where each Fj , j ≠ 0 is the canonical

RKHS, and F∅ is the RKHS of constant functions. Each f ∈ F can therefore be written
as f = β0 +

∑d
i=1

∏i
j=1 fj , and fj(x) = bjx as they are functions from the canonical

RKHS, where bj is a constant. Therefore, f(x) =
∑d

k=0 βkx
k. ■

Remark 2.13. We may opt to use other RKHSs as the building blocks of the polynomial
RKKS. In particular, using the centred canonical kernel seems natural, so that each of
the functions in the constituents of the direct sum of spaces is centred. However, the
polynomial RKKS itself will not be centred.

2.5.3 The ANOVA RKKS

We find it useful to begin this subsection by spending some time to elaborate on the
classical analysis of variance (ANOVA) decomposition, and the associated notions of
main effects and interactions. This will go a long way in understanding the thinking
behind constructing an ANOVA-like RKKS of functions.

The classical ANOVA decomposition

The standard one-way ANOVA is essentially a linear regression model which allows
comparison of means from two or more samples. Given sets of observations yj =

{y1j , . . . , ynjj}, j = 1, . . . ,m, we consider the linear model yij = µj + ϵij , where ϵij

are independent, univariate, normal random variables with a common variance. This
covariate-less model is used to make inferences about the treatment means µj . Often,
the model is written in the overparameterised form by substituting µj = µ + τj . This
gives a different, arguably better, interpretability to the model: the τj ’s, referred to as
the treatment effects, now represent the amount of deviation from the grand, overall
mean µ. Estimating all τj ’s and µ separately is not possible because there is one degree
of freedom that needs to be addressed in the model: there are p+1 mean parameters to
estimate but only information from p means. A common fix to this identification issue is
to set one of the µj ’s, say the first one µ1, to zero, or impose the restriction

∑m
j=1 µj = 0.

The former treats one of the m levels as the control, while the latter treats all treatment
effects symmetrically.

Now write the ANOVA model slightly differently, as yi = f(xi) + ϵi, where f is
defined on the discrete domain X = {1, . . . ,m}, and i indexes all of the n :=

∑m
j=1 nj
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observations. Here, f represents the group-level mean, returning µj for some j ∈ X . In
a similar manner, we can perform the ANOVA decomposition on f as

f = Af + (I −A)f = fo + ft,

where A is an averaging operator that “averages out” its argument x and returns a
constant, and I is the identity operator. fo = Af is a constant function representing the
overall mean, whereas ft = (I − A)f is a function representing the treatment effects τj .
Here are two choices of A:

• Af(x) = f(1) = µ1. This implies f(x) = f(1) +
(
f(x) − f(1)

)
. The overall

mean µ is the group mean µ1, which corresponds to setting the restriction µ1 = 0.

• Af(x) =
∑m

x=1 f(x)/m =: ᾱ. This implies f(x) = ᾱ+
(
f(x)− ᾱ

)
. The overall

mean is µ =
∑m

j=1 αj/m, which corresponds to the restriction
∑m

j=1 µj = 0.

By definition, AAf = A2f = Af , because averaging a constant returns that constant.
We must have that Aft = A(I − A)f = Af − A2f = 0. The choice of A is arbitrary, as
is the choice of restriction, so long as it satisfies the condition that Aft = 0.

The multiway ANOVA can be motivated in a similar fashion. Let x = (x1, . . . , xp) ∈∏p
k=1Xk, and consider functions that map

∏p
k=1Xk to R. Let Ak be an averaging

operator on Xk that averages the k’th component of x from the active argument list,
i.e. Akf is constant on the Xk axis but not necessarily an overall constant function. An
ANOVA decomposition of f is

f =

(
p∏

k=1

(Ak + I −Ak)

)
f =

∑
K∈Pp

(∏
k∈K

(I −Ak)
∏
k/∈K

Ak

)
f =

∑
K∈Pp

fK (2.4)

where we had denoted Pp = P({1, . . . , p}) to be the power set of {1, . . . , p} whose
cardinality is 2p. The summands fK will compose of the overall effect, main effects,
two-way interaction terms, and so on. Each of the terms will satisfy the condition
AkfK = 0, ∀k ∈ K ∈ Pp\{}.

Example 2.1 (Two-way ANOVA decomposition). Let p = 2, X1 = {1, . . . ,m1}, and
X2 = {1, . . . ,m2}. The power set P2 is

{
{}, {1}, {2}, {1, 2}

}
. The ANOVA decomposi-

tion of f (with indices derived trivially from the power set) is

f = f∅ + f1 + f2 + f12.

Here are two choices for the averaging operator Ak analogous to the previous illustration
in the one-way ANOVA.
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• Let A1f(x) = f(1, x2) and A2f(x) = f(x1, 1). Then,

f∅(x) = A1A2f = f(1, 1)

f1(x) = (I −A1)A2f = f(x1, 1)− f(1, 1)

f2(x) = A1(I −A2)f = f(1, x2)− f(1, 1)

f12(x) = (I −A1)(I −A2)f = f(x1, x2)− f(x1, 1)− f(1, x2) + f(1, 1).

• Let Akf(x) =
∑mk

xk=1 f(x1, x2)/mk, k = 1, 2. Then,

f∅(x) = A1A2f = f··
f1(x) = (I −A1)A2f = fx1· − f··
f2(x) = A1(I −A2)f = f·x2 − f··
f12(x) = (I −A1)(I −A2)f = f − fx1· − f·x2 + f··,

where f·· =
∑

x1,x2
f(x1, x2)/m1m2, fx1· =

∑
x2

f(x1, x2)/m2, and
f·x1 =

∑
x1

f(x1, x2)/m1.

It is also easy to convince ourselves that A1f1 = A2f2 = A1f12 = A2f12 = 0 in either
choice of the averaging operator Ak.

Functional ANOVA decomposition

Let us now extend the ANOVA decomposition idea to a general function f : X → R in
some vector space F . We shall jump straight into the multiway ANOVA analogue for
functional decomposition, and to that end, consider x = (x1, . . . , xp) ∈

∏p
k=1Xk =: X a

measurable space, where each of the spaces Xk has measure νk, and ν = ν1 × · · · × νp is
the product measure on X . In the following, denote by Fk the vector space of functions
over the set Xk, k = 1, . . . , p, and F∅ the vector space of constant functions.

As X need not necessarily be a collection of finite sets, we need to figure out a suitable
linear operator that performs an “averaging” of some sort. Consider the linear operator
Ak : F → F−k, where F−k is a vector space of functions for which the kth component is
constant over X , defined by

Akf(x) =

∫
Xk

f(x1, . . . , xp)dνk(xk). (2.5)

Thus, for the one-way ANOVA (p = 1), we get

f(x) =

f∅(x)︷ ︸︸ ︷∫
X
f(x)dν(x) +

f1(x)︷ ︸︸ ︷(
f −

∫
X
f(x)dν(x)

)
(2.6)
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and for the two-way ANOVA (p = 2), we have f = f∅ + f1 + f2 + f12, with

f∅(x) =

∫
X1

∫
X2

f(x1, x2)dν1(x1)dν2(x2)

f1(x) =

∫
X2

(
f(x1, x2)−

∫
X1

f(x1, x2)dν1(x1)
)

dν2(x2)

f2(x) =

∫
X1

(
f(x1, x2)−

∫
X2

f(x1, x2)dν2(x2)
)

dν1(x1)

f12(x) = f(x1, x2)−
∫
X1

f(x1, x2)dν1(x1)−
∫
X2

f(x1, x2)dν2(x2)

+

∫
X1

∫
X2

f(x1, x2)dν1(x1)dν2(x2).

The averaging operator Ak defined in (2.5) generalises the concept of the previ-
ous subsection’s averaging operator. We must then also have, as before, that AkfK =

0, ∀k ∈ K ∈ Pp\{}. For the one-way functional ANOVA decomposition in (2.6), it must
be that f1 is a zero-mean function. As for the two-way ANOVA, it is the case that∫
Xk

fK(x1, x2)dνk(xk) = 0, k = 1, 2, and K ∈
{
{1}, {2}, {1, 2}

}
(Durrande et al., 2013).

This is highly suggestive as to what the ANOVA decomposition of the space F should
look like in general. Starting with p = 1, any f ∈ F can be decomposed as a sum of a
constant plus a zero-meaned function, so we have that F = F∅⊕F̄1, where a bar over Fk,
k = 1, . . . , p will be used to denote the vector space of zero-meaned functions over Xk. For
p ≥ 2 we can argue something similar. Take the vector space space F of functions over∏p

k=1Xk to be the tensor product space F = F1⊗· · ·⊗Fp whose elements are identified
as being tensor product functions f1 ⊗ · · · ⊗ fp, where each fk : Xk → R belongs to Fk.
This is constructed by repeatedly taking the completion of linear combinations of the
tensor product fk ⊗ fj , k, j ∈ {1, . . . , p} as per Definition 2.14. Considered individually,
each Fk can then be decomposed as Fk = F∅k ⊕ F̄k, where F∅k is the space of functions
constant along the k’th axis. Expanding out under the distributivity rule of tensor
products and rearranging slightly, we obtain

F =
(
F∅1 ⊕ F̄1

)
⊗ · · · ⊗

(
F∅p ⊕ F̄p

)
= F∅ ⊕

p⊕
j=1

(⊗
i ̸=j

F∅i ⊗ F̄j

)
⊕

p⊕
j,k=1

j<k

( ⊗
i ̸=j,k

F∅i ⊗ F̄j ⊗ F̄k

)
(2.7)

⊕ · · · ⊕
(
F̄1 ⊗ · · · ⊗ F̄p

)
,

where ‘
⊕

’ and ‘
⊗

’ represent the summation and product operator for direct/tensor
sums and products, respectively. To clarify,

• F∅ is the space of constant functions f∅ : X1 × · · · × Xp → R;
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•
(⊗

i ̸=j F∅i⊗F̄j

)
is the space of functions that are constant on all coordinates ex-

cept the j’th coordinate of x, and the functions are centred on the j’th coordinate;

•
(⊗

i ̸=j,k F∅i⊗F̄j⊗F̄k

)
is the space of functions that are constant on all coordinates

except the jth and kth coordinate of x, and the functions are centred on these two
coordinates;

• F̄1 ⊗ · · · ⊗ F̄p is the space of zero-mean functions f : X1 × · · · × Xp → R;

and so on for for the rest of the spaces in the summand, of which there are 2p members
all together. Therefore, given an arbitrary function f ∈ F , the projection of f onto the
above respective spaces in (2.7) leads to the functional ANOVA representation

f(x) = α+

p∑
j=1

fj(xj) +

p∑
j,k=1

j<k

fjk(xj , xk) + · · ·+ f1···p(x), (2.8)

where α is the grand intercept (a constant).

Definition 2.35 (Functional ANOVA representation). Let Pp = P({1, . . . , p}), the
power set of {1, . . . , p}. For any function f : X1 × · · · × Xp → R, the formula for f

in (2.8) is known as the functional ANOVA representation of f if ∀k ∈ K ∈ Pp\{},

AkfK(x) =

∫
Xk

fK(x)dνk(xk) = 0. (2.9)

In other words, the integral of fK with respect to any of the variables indexed by the
elements in K, is zero. Consequentially, each of the functional ANOVA components are
centred with respect to each axis Xj , j = 1, . . . , p.

For the constant term, main effects, and two-way interaction terms, the familiar
classical expressions are obtained:

f∅ =

∫
f dν;

fj =

∫
f
∏

i ̸=j dνi − f∅;

fjk =

∫
f
∏

i ̸=j,k dνi − fj − fk − f∅.

The ANOVA kernel

At last, we come to the section of deriving the ANOVA RKKS, and, rest assured, the
preceding long build-up will prove to not be in vain. The main idea is to construct an
RKKS such that the functions that lie in them will have the ANOVA representation in
(2.8). The bulk of the work has been done, and in fact we know exactly how this ANOVA
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RKKS should be structured—it is the space as specified in (2.7). The ANOVA RKKS
will be constructed by a similar manipulation of the individual kernels representing the
RKHS building blocks.

Definition 2.36 (ANOVA RKKS). For k = 1, . . . , p, let Fk be centred RKHSs of func-
tions over the set Xk with kernel hk : Xk × Xk → R. Let λk, k = 1, . . . , p be real-valued
scale parameters. The ANOVA RKKS of functions f : X1× · · · ×Xp → R is specified by
the ANOVA kernel, defined by

hλ(x, x
′) =

p∏
k=1

(
1 + λkhk(xk, x

′
k)
)
. (2.10)

It is interesting to note that an ANOVA RKKS is constructed very simply through
multiplication of univariate kernels. Expanding out equations (2.10), we see that it is in
fact a sum of products of kernels with increasing orders of interaction:

hλ(x, x
′) = 1 +

p∑
j=1

λjhj(xj , x
′
j) +

p∑
j,k=1

j<k

λjλkhj(xj , x
′
j)hk(xk, x

′
k) + · · ·+

p∏
j=1

λjhj(xj , x
′
j).

It is now clear from this expansion that the ANOVA RKKS yields functions that resemble
those with the ANOVA representation in (2.8): the mean value of the function stems
from the ‘1’, i.e. it lies in an RKHS of constant functions; the main effects are represented
by the sum of the individual kernels; the two-way interaction terms are represented by
the second-order kernel interactions; and so on.

Example 2.2 (ANOVA RKKS construction). Consider two RKHSs Fk with kernel hk,
k = 1, 2. The ANOVA kernel defining the ANOVA RKKS F is

hλ
(
(x1, x2), (x

′
1, x

′
2)
)
= 1 + λ1h1(x1, x

′
1) + λ2h2(x2, x

′
2) + λ1λ2h1(x1, x

′
1)h2(x2, x

′
2).

Suppose that F1 and F2 are the centred canonical RKHS of functions over R. Then,
functions in F = F∅ ⊕F1 ⊕F2 ⊕ (F1 ⊗F2) are of the form

f(x1, x2) = β0 + β1x1 + β2x2 + β3x1x2.

As a remark, not all of the components of the ANOVA RKKS need to be included in
the construction. The selective exclusion of certain interactions characterises many in-
teresting statistical models. Excluding certain terms of the ANOVA RKKS is equivalent
to setting the scale parameter for those relevant components to be zero, i.e. they play
no role in the decomposition of the function. With this in mind, the ANOVA RKKS
then gives us an objective way of model-building, from linear regression, to multilevel
models, longitudinal models, and so on.
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2.6 Summary

The review of functional analysis allows us to describe the theory of RKHSs and RKKSs,
which are of interest to us because the topology endowed on such spaces gives apprecia-
ble assurances—in particular, all evaluation functionals are continuous in these spaces.
Moreover, RKHSs and RKKSs can be specified completely through kernel functions,
with new and complex function spaces built simply by manipulation of these kernel
functions. Of particular importance is the ANOVA functional decomposition, for which
we realise provides an objective way of constructing various function spaces for regression
and modelling. Such models will be described later on in detail in Chapter 4.

An annotated collection of bibliographical references used for this chapter is as follows.

• Functional analysis. On the introductory material relating to functional analysis
in Section 2.1, the lecture notes by Sejdinovic and Gretton (2012) is recommended,
and forms the basis for most of our material. Additionally, Kokoszka and Reimherr
(2017), Rudin (1987), and Yamamoto (2012) provides a complementary reading.

• RKHS theory. There are certainly no shortages of introductory texts relating
to the theory of RKHSs: Berlinet and Thomas-Agnan (2004), Gu (2013), and
Steinwart and Christmann (2008), to name a few. The concise sketch proof for
the Moore-Aronszajn theorem was mostly inspired by Hein and Bousquet (2004,
Thm. 4).

• Kreĭn space and RKKS theory. The innovation of indefinite inner product
spaces perhaps started in mathematical physics literature, for which the theory of
special relativity depends. Four-dimensional space-time is an often cited example.
In any case, we referred to mainly Ong et al. (2004), which gives an overview in
the context of learning using indefinite kernels. Alpay (1991) and Zafeiriou (2012)
were also useful for understanding the fundamental concepts of RKKSs.

• RKHS building blocks. The main building block RKHSs, i.e. the canonical
RKHS, the fBm RKHS and the Pearson RKHS, are described in the manuscript
of Bergsma (2018).

• ANOVA and functional ANOVA. Classical ANOVA is pretty much existent
in every fundamental statistical textbook. These texts have extremely well writ-
ten introductions to this very important concept: Casella and Berger (2002, Ch.
11), Dean and Voss (1999, Ch. 3). On the relation between classical ANOVA
and functional ANOVA decomposition, Gu (2013) offers novel insights. There is
diverse literature concerning functional ANOVA, namely from the fields of statis-
tical learning (e.g. Wahba, 1990), applied mathematics (e.g. Kuo et al., 2010),
and sensitivity analysis (e.g. Durrande et al., 2013; Sobol, 2001).
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