
Chapter 3

Fisher information and the I-prior

We are interested in calculating the Fisher information for our unknown regression
function f (the parameter to be estimated) in (1.1), subject to (1.2) and f ∈ F , a
reproducing kernel Kreĭn space (RKKS). Usually, the Fisher information pertains to
finite-dimensional parameters, but as F may be infinite dimensional, care must be taken
when computing derivatives with respect to f . For function spaces that possess an or-
thonormal basis, which all Hilbert spaces do, then one could define the derivative of the
functional ρ : F → R componentwise with respect to the orthonormal basis, as in the
finite-dimensional case. This is analogous to the usual concept of partial derivatives.

However, the notion of partial derivatives does not generalise to arbitrary topological
vector spaces for two reasons. Firstly, general spaces may not have an orthonormal
basis (Tapia, 1971, Sec. 5, p. 76). Secondly, componentwise derivatives, which are in
essence limits taken componentwise using the usual definition of derivatives, may not
coincide with the overall limit taken with respect to the topology of the vector space.
For these reasons, there is a need to consider the rigorous concepts of differentiation
suitable for infinite-dimensional vector spaces provided by Fréchet and Gâteaux deriva-
tives. These concepts are introduced in Section 3.2, prior to the actual derivation of the
Fisher information of the regression function in Section 3.3.

In the remaining sections, we discuss the notion of prior distributions for regression
functions, and how one might assign a suitable prior. In our case, we choose an objective
prior following (Jaynes, 1957a, 1957b, 2003): in the absence of any prior knowledge, a
prior distribution which maximises entropy should be used. As it turns out, the entropy
maximising prior for f is Gaussian with mean chosen a priori and covariance kernel
proportional to the Fisher information. We call such a distribution on f an I-prior
distribution for f . The I-prior has a simple, intuitive appeal: much information about f
corresponds to a larger prior covariance, and thus less influence of the prior mean, and
more of the data, in informing the posterior, and vice versa.
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3.1 The traditional Fisher information

It was Fisher (1922) who introduced the method of maximum likelihood (ML) as an ob-
jective way of conducting statistical inference. This method of inference is distinguished
from the Bayesian school of thought in that only the data may inform deductive reason-
ing, but not any sort of prior probabilities. Towards the later stages of his career1, his
work reflected the view that the likelihood is to be more than simply a device to obtain
parameter estimates; it is also a vessel that carries uncertainty about estimation. In this
light and in the absence of the possibility of making probabilistic statements, one should
look to the likelihood in order to make rational conclusions about an inference problem.
Specifically, we may ask two things of the likelihood function: where is the maximum
and what does the graph around the maximum look like? The first of these two problems
is of course ML estimation, while the second concerns the Fisher information.

In simple terms, the Fisher information measures the amount of information that an
observable random variable Y carries about an unknown parameter θ of the statistical
model that models Y . To make this concrete, let Y have the density function p(·|θ)
which depends on θ. Write the log-likelihood function of θ as L(θ) = log p(Y |θ), and
the gradient function of the log-likelihood (the score function) with respect to θ as
S(θ) = ∂L(θ)/∂θ. The Fisher information about the parameter θ is defined to be the
expectation of the second moment of the score function,

I(θ) = E
[(

∂

∂θ
log p(Y |θ)

)2
]
.

Here, expectation is taken with respect to the random variable Y under its true dis-
tribution. Under certain regularity conditions, it can be shown that E[S(θ)] = 0,
and thus the Fisher information is in fact the variance of the score function, since
Var[S(θ)] = E[S(θ)2]−E2[S(θ)]. Further, if log p(Y |θ) is twice differentiable with respect
to θ, then it can be shown that under certain regularity conditions,

I(θ) = E
[
− ∂2

∂θ2
log p(Y |θ)

]
.

Many texts provide a proof of this fact—see, for example, Wasserman (2004, Sec. 9.7).

From the last equation above, we see that the Fisher information is related to the
curvature or concavity of the graph of the log-likelihood function, averaged over the
random variable Y . The curvature, defined as the second derivative on the graph2 of a
function, measures how quickly the function changes with changes in its input values.

1The introductory chapter of Pawitan (2001) and the citations therein give a delightful account of
the evolution of the Fisherian view regarding statistical inference.

2Formally, the graph of a function g is the set of all ordered pairs (x, g(x)).
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This then gives an intuition regarding the uncertainty surrounding θ at its maximal
value; high Fisher information is indicative of a sharp peak at the maxima and therefore
of a small variance (less uncertainty), while low Fisher information is indicative of a
shallow maxima for which many θ share similar log-likelihood values.

3.2 Fisher information in Hilbert space

We extend the idea beyond thinking about parameters as merely numbers in the usual
sense, to abstract objects in Hilbert spaces. This generalisation allows us to extend the
concept of Fisher information to regression functions in RKKSs later. The score and
Fisher information is derived in a familiar manner, but extra care is required when taking
derivatives with respect to elements in Hilbert spaces. We discuss a generalisation of
the concept of differentiability from real-valued functions of a single, real variable, as is
common in calculus, to functions between Hilbert spaces.

Definition 3.1 (Fréchet derivative). Let V and W be two Hilbert spaces, and U ⊆ V be
an open subset. A function ρ : U → W is called Fréchet differentiable at x ∈ U if there
exists a bounded, linear operator T : V → W such that

lim
v→0

∥∥ρ(x+ v)− ρ(x)− Tv
∥∥
W

∥v∥V
= 0

If this relation holds, then the operator T is unique, and we write dρ(x) := T and call
it the Fréchet derivative or Fréchet differential of ρ at x. If ρ is differentiable at every
point U , then ρ is said to be (Fréchet) differentiable on U .

Remark 3.1. Since dρ(x) is a bounded, linear operator, by Lemma 2.1 (p. 47), it is also
continuous.

Remark 3.2. While the Fréchet derivative is most commonly defined as the derivative
of functions between Banach spaces, the definition itself also applies to Hilbert spaces,
since complete inner product spaces are also complete normed spaces. Since our main
focus are RKHSs and RKKSs, i.e. spaces with Hilbertian topology (recall that RKKSs
are endowed with the topology of its associated Hilbert space), it is beneficial to present
the material using Hilbert spaces. We appeal to the works of Balakrishnan (1981, Def.
3.6.5) and Bouboulis and Theodoridis (2011, Sec. 6) in this regard.

Remark 3.3. The use of the open subset U in the definition above for the domain of the
function ρ is so that the notion of ρ being differentiable is possible even without having
it defined on the entire space V.
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The intuition here is similar to that of regular differentiability, in that the linear
operator T well approximates the change in ρ at x (the numerator), relative to the
change in x (the denominator)—the fact that the limit exists and is zero, it must mean
that the numerator converges faster to zero than the denominator does. In Landau
notation, we have the familiar expression ρ(x+ v) = ρ(v) + dρ(x)(v) + o(v), that is, the
derivative of ρ at x gives the best linear approximation to ρ near x. Note that the limit
in the definition is meant in the usual sense of convergence of functions with respect to
the norms of V and W.

For the avoidance of doubt, dρ(x) is not a vector in W, but is an element of the set
of bounded, linear operators from V to W, denoted L(V;W). That is, if ρ : U → W is a
differentiable function at all points in U ⊆ V, then its derivative is a linear map

dρ : U → L(V;W)

x 7→ dρ(x).

It follows that this function may also have a derivative, which by definition will be a
linear map as well. This is the second Fréchet derivative of ρ, defined by

d2ρ : U → L
(
V;L(V;W)

)
x 7→ d2ρ(x).

To make sense of the space on the right-hand side, consider the following argument.

• Take any ϕ(·) ∈ L
(
V;L(V;W)

)
. For all v ∈ V, ϕ(v) ∈ L(V;W), and ϕ(v) is linear

in v.

• Since ϕ(v) ∈ L(V;W), it is itself a linear operator taking elements from V to W.
We can write it as ϕ(v)(·) for clarity.

• So, for any v′ ∈ V, ϕ(v)(v′) ∈ W, and it depends linearly on v′ too. Thus, given
any two v, v′ ∈ V, we obtain an element ϕ(v)(v′) ∈ W which depends linearly on
both v and v′.

• It is therefore possible to identify ϕ ∈ L
(
V;L(V;W)

)
with an element ξ ∈ L(V ×

V,W) such that for all v, v′ ∈ V, ϕ(v)(v′) = ξ(v, v′).

To summarise, there is an isomorphism between the space on the right-hand side and the
space L(V ×V,W) of all continuous, bilinear maps from V to W. The second derivative
d2ρ(x) is therefore a bounded, symmetric, bilinear operator from V × V to W.

Another closely related type of differentiability is the concept of Gâteaux differentials,
which is the formalism of functional derivatives in calculus of variations. Let V, W and
U be as before, and consider the function ρ : U → W.

Fisher information and the I-prior84



Definition 3.2 (Gâteaux derivative). The Gâteaux differential or the Gâteaux derivative
∂vρ(x) of ρ at x ∈ U in the direction v ∈ V is defined as

∂vρ(x) = lim
t→0

ρ(x+ tv)− ρ(x)

t
,

for which this limit is taken relative to the topology of W. The function ρ is said to be
Gâteaux differentiable at x ∈ U if ρ has a directional derivative along all directions at
x. We name the operator ∂ρ(x) : V → W which assigns v 7→ ∂vρ(x) ∈ W the Gâteaux
derivative of ρ at x, and the operator ∂ρ : U → (V;W) = {A |A : V → W} which assigns
x 7→ ∂ρ(x) simply the Gâteaux derivative of ρ.

Remark 3.4. For Gâteaux derivatives, V need only be a vector space, while W a topolog-
ical space. Tapia (1971, p. 55) wrote that for quite some time analysis was simply done
using the topology of the real line when dealing with functionals. As a result, important
concepts such as convergence could not be adequately discussed.

Remark 3.5. Tapia (1971, p. 52) goes on to remark that the space (V;W) of operators
from V to W is not a topological space, and there is no obvious way to define a topol-
ogy on it. Consequently, we cannot consider the Gâteaux derivative of the Gâteaux
derivative.

Unlike the Fréchet derivative, which is by definition a linear operator, the Gâteaux
derivative may fail to satisfy the additive condition of linearity3. Even if it is linear,
it may fail to depend continuously on some v′ ∈ V if V and W are infinite dimen-
sional. In this sense, Fréchet derivatives are more demanding than Gâteaux derivatives.
Nevertheless, the reasons we bring up Gâteaux derivatives is because it is usually sim-
pler to calculate Gâteaux derivatives than Fréchet derivatives, and the two concepts are
connected by the lemma below.

Lemma 3.1 (Fréchet differentiability implies Gâteaux differentiability). If ρ is Fréchet
differentiable at x ∈ U , then ρ : U → W is Gâteaux differentiable at that point too, and
dρ(x) = ∂ρ(x).

Proof. Since ρ is Fréchet differentiable at x ∈ U , we can write ρ(x+v) ≈ ρ(x)+dρ(x)(v)
for some v ∈ V. Then,

lim
t→0

∥∥∥∥ρ(x+ tv)− ρ(x)

t
− dρ(x)(v)

∥∥∥∥
W

= lim
t→0

1

t

∥∥ρ(x+ tv)− ρ(x)− dρ(x)(tv)
∥∥
W

= lim
t→0

∥∥ρ(x+ tv)− ρ(x)− dρ(x)(tv)
∥∥
W

∥tv∥V
∥v∥V

(3.1)
3Although, for all scalars λ ∈ R, the Gâteaux derivative is homogenous: ∂λvρ(x) = λ∂vρ(x).
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converges to 0 since ρ is Fréchet differentiable at x, and t→ 0 if and only if ∥tv∥V → 0.
Thus, ρ is Gâteaux differentiable at x, and the Gâteaux derivative ∂vρ(x) of ρ at x in
the direction v coincides with the Fréchet derivatiave of ρ at x evaluated at v. ■

On the other hand, Gâteaux differentiability does not necessarily imply Fréchet dif-
ferentiability. A sufficient condition for Fréchet differentiability is that the Gâteaux
derivative is continuous at the point of differentiation, i.e. the map ∂ρ : U → (V;W)

is continuous at x ∈ U . In other words, if ∂ρ(x) is a bounded linear operator and the
convergence in (3.1) is uniform with respect to all v such that ∥v∥V = 1, then dρ(x)
exists and dρ(x) = ∂ρ(x) (Tapia, 1971, p. 57 & 66).

Consider now the function dρ(x) : V → W and suppose that ρ is twice Fréchet
differentiable at x ∈ U , i.e. dρ(x) is Fréchet differentiable at x ∈ U with derivative
d2ρ(x) : V × V → W. Then, dρ(x) is also Gâteaux differentiable at the point x and the
two differentials coincide. In particular, we have∥∥∥∥dρ(x+ tv)(v′)− dρ(x)(v′)

t
− d2ρ(x)(v, v′)

∥∥∥∥
W

→ 0 as t→ 0, (3.2)

by a similar argument in the proof of Lemma 3.1 above. We will use this fact when we
describe the Hessian in a little while.

There is also the concept of gradients in Hilbert space. Recall that, as a consequence
of the Riesz-Fréchet theorem, the mapping U : V → V∗ from the Hilbert space V to its
continuous dual space V∗ defined by U : v 7→ ⟨·, v⟩V is an isometric isomorphism. Again,
let U ⊆ V be an open subset, and let ρ : U → R be a Fréchet differentiable function with
derivative dρ : U → L(V;R) ≡ V∗. We define the gradient as follows.

Definition 3.3 (Gradient). The gradient of ρ is the operator ∇ρ : U → V defined by
∇ρ = U−1 ◦ dρ. Thus, for x ∈ U , the gradient of ρ at x, denoted ∇ρ(x), is the unique
element of V satisfying

⟨∇ρ(x), v⟩V = dρ(x)(v)

for any v ∈ V. Note that ∇ρ being a composition of two continuous functions, is itself
continuous.

Remark 3.6. Alternatively, the gradient can be motivated using the Riesz representation
theorem in Definition 3.1 of the Fréchet derivative. Since V∗ ∋ T : V → R, there is a
unique element v∗ ∈ V such that T (v) = ⟨v∗, v⟩V for any v ∈ V. The element v∗ ∈ V is
called the gradient of ρ at x.

Since the gradient of ρ is an operator on U to V, it may itself have a Fréchet derivative.
Assuming existence, i.e. ρ is twice Fréchet differentiable at x ∈ U , we call this derivative
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the Hessian of ρ. From (3.2), it must be that

d2ρ(x)(v, v′) = lim
t→0

dρ(x+ tv)(v′)− dρ(x)(v′)
t

= lim
t→0

⟨∇ρ(x+ tv), v′⟩V − ⟨∇ρ(x), v′⟩V
t

= lim
t→0

⟨
∇ρ(x+ tv)−∇ρ(x)

t
, v′

⟩
V

=
⟨
∂v∇ρ(x), v′

⟩
V .

The second line follows from the definition of gradients, the third line by linearity of
inner products, and the final line by definition of Gâteaux derivatives and continuity of
inner products4. Since ∇ρ is continuous, its Fréchet and Gâteaux differentials coincide,
and we have that ∂v∇ρ(x) = d∇ρ(x)(v). Letting V, W and U be as before, we now
define the Hessian for the function ρ : U → W.

Definition 3.4 (Hessian). The Fréchet derivative of the gradient of ρ is known as the
Hessian of ρ. Denoted ∇2ρ, it is the mapping ∇2ρ : U → L(V;V) defined by ∇2ρ = d∇ρ,
and it satisfies ⟨

∇2ρ(x)(v), v′
⟩
V = d2ρ(x)(v, v′).

for x ∈ U and v, v′ ∈ V.

Remark 3.7. Since d2ρ(x) is a bilinear form in V, we can equivalently write

d2ρ(x)(v, v′) = ⟨d2ρ(x), v ⊗ v′⟩V⊗V

following the correspondence between bilinear forms and tensor product spaces.

With the differentiation tools above, we can now derive the Fisher information that
we set out to obtain at the beginning of this section. Let Y be a random variable with
density in the parametric family {p(·|θ) | θ ∈ Θ}, where Θ is now assumed to be a Hilbert
space with inner product ⟨·, ·⟩Θ. If p(Y |θ) > 0, the log-likelihood function of θ is the
real-valued function L(·|Y ) : Θ → R defined by θ 7→ log p(Y |θ). The score S, assuming
existence, is defined to be the (Fréchet) derivative of L(·|Y ) at θ, i.e. S : Θ → L(Θ;R) ≡
Θ∗ defined by S = dL(·|Y ). The second (Fréchet) derivative of L(·|Y ) at θ is then
d2L(·|Y ) : Θ → L(Θ×Θ;R). We now prove the following proposition.

Proposition 3.2 (Fisher information in Hilbert spaces). Assume that both p(Y |·) and
log p(Y |·) are Fréchet differentiable at θ. Then, the Fisher information for θ ∈ Θ is the
element in the tensor product space Θ⊗Θ defined by

I(θ) = E[∇L(θ|Y )⊗∇L(θ|Y )].

4For any continuous function g : R → R, limx→a g(x) = g(limx→a x) = g(a).
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Equivalently, assuming further that log p(Y |·) is twice Fréchet differentiable at θ, the
Fisher information can be written as

I(θ) = E[−∇2L(θ|Y )].

Note that both expectations are taken under the true distribution of random variable Y .

Proof. The Gâteaux derivative of L(·|Y ) = log p(Y |·) at θ ∈ Θ in the direction b ∈ Θ,
which is also its Fréchet derivative, is

∂bL(θ|Y ) =
d
dt log p(Y |θ + tb)

∣∣∣∣∣
t=0

=
d
dtp(Y |θ + tb)

∣∣
t=0

p(Y |θ)

=
∂bp(Y |θ)
p(Y |θ)

.

Since it assumed that p(Y |·) is Fréchet differentiable at θ, dp(Y |θ)(b) = ∂bp(Y |θ). The
expectation of the score for any b ∈ Θ is shown to be

E[dL(θ|Y )(b)] = E
[

dp(Y |θ)(b)
p(Y |θ)

]
=

∫ dp(Y |θ)(b)
����p(Y |θ) ����p(Y |θ) dY

= d
(∫

p(Y |θ)dY
)
(b)

= 0.

The interchange of Lebesgue integrals and Fréchet differentials is allowed under certain
conditions5, which are assumed to be satisfied here. The derivative of

∫
p(Y |·)dY at

any value of θ ∈ Θ is the zero vector, as it is the derivative of a constant (i.e. 1).

Using the classical notion that the Fisher information is the variance of the score
function, then, for fixed b, b′ ∈ Θ, combined with the fact that dL(θ|Y )(·) is a zero-

5 Following Kammar (2016), the conditions are:
1. L(·|Y ) is Frechét differentiable on U ⊆ Θ for almost every Y ∈ R.
2. L(θ|Y ) and dL(θ|Y )(b) are both integrable with respect to Y , for any θ ∈ U ⊆ Θ and b ∈ Θ.
3. There is an integrable function g(Y ) such that L(θ|Y ) ≤ g(Y ) for all θ ∈ Θ and almost every

Y ∈ R.
These conditions as stated are analogous to the measure theoretic requirements for Leibniz’s integral
rule to hold (differentiation under the integral sign). For nice and well-behaved probability densities,
such as the normal density that we will be working with, there aren’t issues with interchanging integrals
and derivatives.
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meaned function, we have that

I(θ)(b, b′) = E[dL(θ|Y )(b)dL(θ|Y )(b′)]

= E
[
⟨∇L(θ|Y ), b⟩Θ

⟨
∇L(θ|Y ), b′

⟩
Θ

]
=

⟨
E[∇L(θ|Y )⊗∇L(θ|Y )], b⊗ b′

⟩
Θ⊗Θ

.

Hence, I(θ) as a bilinear form corresponds to the element E[∇L(θ|Y )⊗∇L(θ|Y )] ∈ Θ⊗Θ.

The Gâteaux derivative of the Fréchet differential is the second Fréchet derivative,
since L(·|Y ) is assumed to be twice Fréchet differentiable at θ ∈ Θ:

d2L(θ|Y )(b, b′) = ∂b′dL(θ|Y )(b)

= ∂b′

(
dp(Y |θ)(b)
p(Y |θ)

)
=

d
dt

(
dp(Y |θ + tb′)(b)

p(Y |θ + tb′)

) ∣∣∣∣∣
t=0

=
p(Y |θ)d2p(Y |θ)(b, b′)− dp(Y |θ)(b)dp(Y |θ)(b′)

p(Y |θ)2

=
d2p(Y |θ)(b, b′)

p(Y |θ)
− dL(θ|Y )(b)dL(θ|Y )(b′).

Taking expectations of the first term in the right-hand side, we get that

E
[

d2p(Y |θ)(b, b′)
p(Y |θ)

]
=

∫ d
(
dp(Y |θ)

)
(b, b′)

����p(Y |θ) ����p(Y |θ) dY

= d2

(∫
p(Y |θ)dY

)
(b, b′)

= 0.

Thus, we see that from the first result obtained,

E[−d2L(θ|Y )(b, b′)] = E[dL(θ|Y )(b)dL(θ|Y )(b′)]

= I(θ)(b, b′),

while

E[−d2L(θ|Y )(b, b′)] = −E⟨∇2L(θ|Y )(b), b′⟩Θ
= ⟨−E∇2L(θ|Y )(b), b′⟩Θ.

It would seem that E[−∇2L(θ|Y )(b)] is an operator from Θ onto itself which also induces
a bilinear form equivalent to E[−d2L(θ|Y )]. Therefore, I(θ) = E[−∇2L(θ|Y )]. ■
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The Fisher information I(θ) for θ, much like the covariance operator, can be viewed
in one of three ways:

1. As its general form, i.e. an element in the tensor product space Θ⊗Θ;

2. As an operator I(θ) : Θ → Θ defined by I(θ) : b 7→ E[−∇2L(θ|Y )](b); and finally

3. As a bilinear form I(θ) : Θ×Θ → R defined by I(θ)(b, b′) = ⟨−E∇2L(θ|Y )(b), b′⟩Θ
= E[−d2L(θ|Y )(b, b′)].

In particular, viewed as a bilinear form, the evaluation of the Fisher information for θ
at two points b and b′ in Θ is seen as the Fisher information between two continuous,
linear functionals of θ. For brevity, we denote this I(θb, θb′), where θb = ⟨θ, b⟩θ for some
b ∈ Θ. The natural isometry between Θ and its continuous dual Θ∗ then allows us to
write

I(θb, θb′) = ⟨I(θ), b⊗ b′⟩Θ⊗Θ =
⟨
I(θ), ⟨·, b⟩Θ ⊗ ⟨·, b′⟩Θ

⟩
Θ∗⊗Θ∗ . (3.3)

3.3 Fisher information for regression functions

We are now equipped to derive the Fisher information for our regression function. For
convenience, we restate the regression model and its assumptions. The regression model
relating response variables yi ∈ R and the covariates xi ∈ X , for i = 1, . . . , n is

yi = α+ f(xi) + ϵi (from 1.1)

(ϵ1, . . . , ϵn)
⊤ ∼ Nn(0,Ψ

−1) (from 1.2)

where α ∈ R is an intercept and f is in an RKKS F with kernel h : X × X → R. Note
that the dependence of the kernel on parameters η is implicitly assumed.

Lemma 3.3 (Fisher information for regression function). For the regression model (1.1)
subject to (1.2) and f ∈ F where F is an RKKS with kernel h, the Fisher information
for f is given by

I(f) =
n∑

i=1

n∑
j=1

ψijh(·, xi)⊗ h(·, xj)

where ψij are the (i, j)’th entries of the precision matrix Ψ of the normally distributed
model errors. More generally, suppose that F has a feature space V such that the mapping
ϕ : X → V is its feature map, and if f(x) = ⟨ϕ(x), v⟩V , then the Fisher information
I(v) ∈ V ⊗ V for v is

I(v) =
n∑

i=1

n∑
j=1

ψijϕ(xi)⊗ ϕ(xj).
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Proof. For x ∈ X , let kx : V → R be defined by kx(v) = ⟨ϕ(x), v⟩V . Clearly, kx is linear
and continuous. Hence, the Gâteaux derivative of kx(v) in the direction u is

∂ukx(v) = lim
t→0

k(v + tu)− k(v)

t

= lim
t→0

⟨ϕ(x), v + tu⟩V − ⟨ϕ(x), v⟩V
t

= lim
t→0

⟨ϕ(x), �v + tu− �v⟩V
t

= lim
t→0

t⟨ϕ(x), u⟩V
t

= ⟨ϕ(x), u⟩V .

Since clearly ∂ukx(v) is a continuous linear operator for any u ∈ V, it is bounded, so
the Fréchet derivative exists and dkx(v) = ∂kx(v). Let y = {y1, . . . , yn}, and denote the
hyperparameters of the regression model by θ = {α,Ψ, η}. Without loss of generality,
assume α = 0, and even if this is not so, we can always add back α to the yi’s later.
Regardless, both α and y are constant in the differential of L(v|y, θ). The log-likelihood
of v is given by

L(v|y, θ) = const. − 1

2

n∑
i=1

n∑
j=1

ψij

(
yi − kxi(v)

)(
yj − kxj (v)

)
and the score by

dL(·|y, θ) = −1

2

n∑
i=1

n∑
j=1

ψij d(kxikxj − yjkxi − yikxj + yiyj)

= −1

2

n∑
i=1

n∑
j=1

ψij(kxjdkxi + kxidkxj − yjdkxi − yidkxj ).

Differentiating again gives

d2L(·|y, θ) = −1

2

n∑
i=1

n∑
j=1

ψij(dkxjdkxi + dkxidkxj )

= −
n∑

i=1

n∑
j=1

ψij dkxidkxj

= −
n∑

i=1

n∑
j=1

ψij⟨ϕ(xi), ·⟩V ⟨ϕ(xj), ·⟩V ,

3.3 Fisher information for regression functions 91



since the derivative of dkx = ⟨ϕ(x), ·⟩V is zero (it is the derivative of a constant). We
can then calculate the Fisher information to be

I(v) = −E
[
d2L(v|y, θ)

]
= E

 n∑
i=1

n∑
j=1

ψij⟨ϕ(xi), ·⟩V ⟨ϕ(xj), ·⟩V


=

n∑
i=1

n∑
j=1

ψij ⟨ϕ(xi)⊗ ϕ(xj), ·⟩V⊗V

=

n∑
i=1

n∑
j=1

ψij · ϕ(xi)⊗ ϕ(xj).

Here, we had treated ϕ(xi) ⊗ ϕ(xj) as a bilinear operator, since I(v) ∈ V ⊗ V as well.
Also, the expectation is free of the random variable under expectation (i.e. y), which
makes the second line possible.

By taking the canonical feature ϕ(x) = h(·, x), we have that ϕ ≡ h(·, x) : X → F ≡ V
and therefore for f ∈ F , the reproducing property gives us f(x) = ⟨h(·, x), f⟩F , so the
formula for I(f) ∈ F ⊗ F follows. ■

The above lemma gives the form of the Fisher information for f in a rather abstract
fashion. Consider the following example of applying Lemma 3.3 to obtain the Fisher
information for a standard linear regression model.

Example 3.1 (Fisher information for linear regression). As before, suppose model (1.1)
subject to (1.2) and f ∈ F , an RKHS. For simplicity, we assume iid errors, i.e. Ψ =

ψIn. Let X = Rp, and the feature space V = Rp be equipped with the usual dot
product ⟨·, ·⟩V : V ⊗ V → R defined by v⊤v. Consider also the identity feature map
ϕ : X → V defined by ϕ(x) = x. For some β ∈ V, the linear regression model is
such that f(x) = x⊤β = ⟨ϕ(x),β⟩V . Therefore, according to Lemma 3.3, the Fisher
information for β is

I(β) =
n∑

i=1

n∑
j=1

ψ · ϕ(xi)⊗ ϕ(xj)

= ψ

n∑
i=1

n∑
j=1

xi ⊗ xj

= ψX⊤X.

Note that the operation ‘⊗’ on two vectors in Euclidean space is simply their outer
product. The resulting X is a n× p matrix containing the entries x⊤

1 , . . . ,x⊤
n row-wise.

This is of course recognised as the Fisher information for the regression coefficients in
the standard linear regression model.
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We can also compute the Fisher information for linear functionals of f , and in par-
ticular, for point evaluation functionals of f , thereby allowing us to compute the Fisher
information at two points f(x) and f(x′).

Corollary 3.3.1 (Fisher information between two linear functionals of f). For our
regression model as defined in (1.1) subject to (1.2) and f belonging to an RKKS F with
kernel h, the Fisher information at two points f(x) and f(x′) is given by

I
(
f(x), f(x′)

)
=

n∑
i=1

n∑
j=1

ψijh(x, xi)h(x
′, xj).

Proof. In an RKKS F , the reproducing property gives f(x) = ⟨f, h(·, x)⟩F and in par-
ticular, ⟨h(·, x), h(·, x′)⟩F = h(x, x′). By (3.3), we have that

I(f)
(
h(·, x), h(·, x′)

)
=

⟨
I(f), h(·, x)⊗ h(·, x′)

⟩
F⊗F

=

⟨
n∑

i=1

n∑
j=1

ψijh(·, xi)⊗ h(·, xj) , h(·, x)⊗ h(·, x′)

⟩
F⊗F

=
n∑

i=1

n∑
j=1

ψij

⟨
h(·, xi), h(·, x)

⟩
F
⟨
h(·, xj), h(·, x′)

⟩
F

=
n∑

i=1

n∑
j=1

ψijh(x, xi)h(x
′, xj).

The second to last line follows from the definition of the usual inner product for tensor
spaces, and the last line follows by the reproducing property. ■

An inspection of the formula in Corollary 3.3.1 reveals the fact that the Fisher in-
formation for f(x), I

(
f(x), f(x)

)
, is positive if and only if h(x, xi) ̸= 0 for at least one

i ∈ {1, . . . , n}. In practice, this condition is often satisfied for all x, so this result might
be considered both remarkable and reassuring, because it suggests we can estimate f
over its entire domain, no matter how big, even though we only have a finite amount of
data points.

3.4 The induced Fisher information RKHS

From Lemma 3.3, the formula for the Fisher information uses n points of the observed
data xi ∈ X . This seems to suggest that the Fisher information only exists for a finite
subspace of the RKKS F . Indeed, this is the case, and we will be specific about the
subspace for which there is Fisher information. Consider the following set, a similar one
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considered in the proof of the Moore-Aronszajn theorem (Theorem 2.6, p. 57):

Fn =

{
f : X → R

∣∣∣∣ f(x) = n∑
i=1

h(x, xi)wi, wi ∈ R, i = 1, . . . , n

}
. (3.4)

Since h(·, xi) ∈ F , any f ∈ Fn is also in F by linearity, and thus Fn is a subset of F .
Further, Fn is closed under addition and multiplication by a scalar, and is therefore a
subspace of F . Unlike Theorem 2.6, Fn defined here is a finite subspace of dimension n.

Let F⊥
n be the orthogonal complement of Fn in F . By the orthogonal decomposition

theorem (Theorem 2.3, p. 49), any regression function f ∈ F can be uniquely decom-
posed as f = fn + r, with fn ∈ Fn and r ∈ F⊥

n , where F = Fn ⊕ F⊥
n . We saw in the

proof of Theorem 2.6 that F is the closure of Fn, so therefore F is dense in Fn, and
hence by Corollary 2.3.1 (p. 49) we have that F⊥

n = {0}. Alternatively, we could have
argued that any r ∈ F⊥

n is orthogonal to each of the h(·, xi) ∈ F , so by the reproducing
property of h, r(xi) = ⟨r, h(·, xi)⟩F = 0. This suggests the following corollary.

Corollary 3.3.2. With g ∈ F , the Fisher information for g is zero if and only if g ∈ F⊥
n ,

i.e. if and only if g(x1) = · · · = g(xn) = 0.

Proof. Let I(f) be the Fisher information for f . The Fisher information for ⟨f, r⟩F is

I(f)(r, r) = ⟨I(f), r ⊗ r⟩F⊗F

=
n∑

i=1

n∑
j=1

ψij⟨h(·, xi), r⟩F ⟨h(·, xj), r⟩F

=
n∑

i=1

n∑
j=1

ψijr(xi)r(xj).

So if r ∈ F⊥
n , then r(x1) = · · · = r(xn) = 0, and thus the Fisher information at r ∈ F⊥

n

is zero. Conversely, if the Fisher information is zero, it must necessarily mean that
r(x1) = · · · = r(xn) = 0 since ψij > 0, and thus r ∈ F⊥

n . ■

The above corollary implies that the Fisher information for our regression function
f ∈ F exists only on the n-dimensional subspace Fn. More subtly, as there is no Fisher
information for r ∈ F⊥

n , r cannot be estimated from the data. Thus, in estimating f , we
will only ever consider the finite subspace Fn ⊂ F where there is information about f .

As it turns out, Fn can be identified as an RKHS with reproducing kernel equal to
the Fisher information for f . That is, the real, symmetric, and positive-definite function
hn over X × X defined by hn(x, x

′) = I
(
f(x), f(x′)

)
is associated to the RKHS which

is Fn, equipped with the squared norm ∥f∥2Fn
=

∑n
i,j=1wi(Ψ

−1)ijwj . This is stated in
the next lemma.
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Lemma 3.4. Let Fn as in (3.4) be equipped with the inner product

⟨f, f ′⟩Fn =
n∑

i=1

n∑
j=1

wi(Ψ
−1)ijw

′
j = w⊤Ψw′ (3.5)

for any two f =
∑n

i=1 h(·, xi)wi and f ′ =
∑n

j=1 h(·, xj)w′
j in Fn. Then, hn : X ×X → R

as defined by

hn(x, x
′) =

n∑
i=1

n∑
j=1

ψijh(x, xi)h(x
′, xj)

is the reproducing kernel of Fn.

Proof. What needs to be proven is the reproducing property of hn for Fn. First note
that by defining wj(x) =

∑n
k=1 ψjkh(x, xk), we see that

hn(x, ·) =
n∑

j=1

n∑
k=1

ψjkh(x, xj)h(·, xk) =
n∑

j=1

wj(x)h(·, xj)

Furthermore, writing h(·, xj) =
∑n

k=1 δjkh(·, xk), with δ being the Kronecker delta, we
see that h(·, xj) is also an element of Fn, and in particular,

⟨
h(·, xi), h(·, xk)

⟩
Fn

=

n∑
j=1

n∑
l=1

δij(Ψ
−1)jlδlk = (Ψ−1)ik.

Denote by ψ−
ij the (i, j)’th element of Ψ−1. A fact we will use later is

∑n
k=1 ψjkψ

−
ik =

(ΨΨ−1)ji = (In)ji = δji. In the mean time,

⟨f, hn(x, ·)⟩Fn =

⟨
n∑

i=1

h(·, xi)wi,

n∑
j=1

n∑
k=1

ψjkh(x, xj)h(·, xk)

⟩
Fn

=
n∑

i=1

wi

n∑
j=1

n∑
k=1

ψjkh(x, xj)
⟨
h(·, xi), h(·, xk)

⟩
Fn

=

n∑
i=1

wi

n∑
j=1

n∑
k=1

ψjkh(x, xj)ψ
−
ik

=

n∑
i=1

wi

n∑
j=1

δjih(x, xj)

=
n∑

i=1

wih(x, xi)

= f(x).

Therefore, hn is a reproducing kernel for Fn. Obviously, hn is positive definite (it is a
squared kernel), and hence it defines the RKHS Fn. ■
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3.5 The I-prior

In the introductory chapter (Chapter 1), we discussed that unless the regression function
f is regularised (for instance, using some prior information), the ML estimator of f is
likely to be inadequate. In choosing a prior distribution for f , we appeal to the principle
of maximum entropy (Jaynes, 1957a, 1957b, 2003), which states that the probability
distribution which best represents the current state of knowledge is the one with largest
entropy. In this section, we aim to show the relationship between the Fisher information
for f and its maximum entropy prior distribution. Before doing this, we recall the
definition of entropy and derive the maximum entropy prior distribution for a parameter
which has unrestricted support. Let (Θ, D) be a metric space and let ν = νD be a volume
measure induced by D (e.g. Hausdorff measure). In addition, assume ν is a probability
measure over Θ so that (Θ,B(Θ), ν) is a Borel probability space.

Definition 3.5 (Entropy). Denote by p a probability density over Θ relative to ν. Sup-
pose that

∫
p log pdν < ∞, i.e. p log p is Lebesgue integrable and belongs to the space

L1(Θ, ν). The entropy of a distribution p over Θ relative to a measure ν is defined as

H(p) = −
∫
Θ
p(θ) log p(θ)dν(θ). (3.6)

In deriving the maximum entropy distribution, we will need to maximise the func-
tional H with respect to p. Typically, this is done using calculus of variations techniques,
and standard calculations (Appendix A, p. 269) reveal that the functional derivative of
H(p) with respect to p, denoted ∂H/∂p, is equal to −1− log p. We now present another
well known result from information theory, regarding the form of the maximum entropy
distribution.

Lemma 3.5 (Maximum entropy distribution). Let (Θ, D) be a metric space, ν = νD

be a volume measure induced by D, and p be a probability density function on Θ. The
entropy maximising density p̃, which satisfies

arg max
p∈L2(Θ,ν)

{
H(p) = −

∫
Θ
p(θ) log p(θ)dν(θ)

}
,

subject to the constraints

E
[
D(θ, θ0)

2
]
=

∫
Θ
D(θ, θ0)

2p(θ)dν(θ) = const.,
∫
Θ
p(θ)dν(θ) = 1,

and p(θ) ≥ 0, ∀θ ∈ Θ,

is the density given by
p̃(θ) ∝ exp

(
−1

2
D(θ, θ0)

2

)
,
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for some fixed θ0 ∈ Θ. If (Θ, D) is a Euclidean space and ν a flat (Lebesgue) measure
then p̃ represents a (multivariate) normal density.

Sketch proof. This follows from standard calculus of variations, though we provide a
sketch proof here. Set up the Langrangian

L(p, γ1, γ2) = −
∫
Θ
p(θ) log p(θ)dν(θ) + γ1

(∫
Θ
D(θ, θ0)

2p(θ)dν(θ)− const.
)

+ γ2

(∫
Θ
p(θ)dν(θ)− 1

)
.

Taking derivatives with respect to p (see Appendix A, p. 269 for definition of functional
derivatives) yields

∂

∂p
L(p, γ1, γ2)(θ) = −1− log p(θ) + γ1D(θ, θ0)

2 + γ2.

Set this to zero, and solve for p(θ):

p(θ) = exp
(
γ1D(θ, θ0)

2 + γ2 − 1
)

∝ exp
(
γ1D(θ, θ0)

2
)
.

This density is positive for any values of γ1 (and γ2), and it normalises to one if γ1 < 0.
As γ1 can take any value less than zero, we choose γ1 = −1/2.

Now, if Θ ≡ Rm and ν is the Lebesgue measure, then D(θ, θ0)
2 = ∥θ − θ0∥2Rm , so

p̃ is recognised as a multivariate normal density centred at θ0 with identity covariance
matrix. ■

Returning to the normal regression model of (1.1) subject to (1.2), we shall now
derive the maximum entropy prior for f in some RKKS F . One issue that we have is
that the set F is potentially “too big” for the purpose of estimating f , that is, for certain
pairs of functions F , the data do not allow an assessment of whether one is closer to the
truth than the other. In particular, the data do not contain information to distinguish
between two functions f and g in F for which f(xi) = g(xi), i = 1, . . . , n since the
Fisher information for the difference between f and g would be zero. Since the Fisher
information for a linear functional of a non-zero fn ∈ Fn is non-zero, there is information
to allow a comparison between any pair of functions in f0 + Fn := {f0 + fn | fn ∈ Fn}
for some f0 ∈ F . A prior for f therefore need not have support F , instead it is sufficient
to consider priors with support f0 + Fn, where f0 ∈ F is fixed and chosen a priori as a
“best guess” of f . We now state and prove the main I-prior theorem.
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Theorem 3.6 (I-prior). Let F be an RKKS with kernel h, and consider the finite-
dimensional subspace Fn of F equipped with an inner product as per (3.5). Let ν be a
volume measure induced by the norm ∥·∥Fn =

√
⟨·, ·⟩Fn. With f0 ∈ F , let D0 be the class

of distributions p such that

E
(
∥f − f0∥2Fn

)
=

∫
Fn

∥f − f0∥2Fn
p(f)dν(f) = const.

Denote by p̃ the density of the entropy maximising distribution among the class of
distributions within D0. Then, p̃ is Gaussian over F with mean f0 and covariance
function equal to the reproducing kernel of Fn, i.e.

Cov
(
f(x), f(x′)

)
= hn(x, x

′).

We call p̃ the I-prior for f .

Proof. Recall the fact that any f ∈ F can be decomposed into f = fn+ r, with fn ∈ Fn

and r ∈ F⊥
n . Also recall that there is no Fisher information about any r ∈ Rn, and

therefore it is not possible to estimate r from the data. Therefore, p(r) = 0, and one
needs only consider distributions over Fn when building distributions over F .

The norm on Fn induces the metric D(f, f ′) = ∥f − f ′∥Fn . Consider functions in the
set f0 + Fn, i.e. functions of the form

f = f0 +

n∑
i=1

h(·, xi)wi,

such that (f − f0) ∈ Fn. Compute the squared distance between f and f0:

D(f, f0)
2 = ∥f − f0∥2Fn

=

∥∥∥∥∥
n∑

i=1

h(·, xi)wi

∥∥∥∥∥
2

Fn

= w⊤Ψ−1w.

Thus, by Lemma 3.5, the maximum entropy distribution for f − f0 =
∑n

i=1 h(·, xi)wi is

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ).

This implies that f is Gaussian, since

⟨f, f ′⟩F =

⟨
f0 +

n∑
i=1

h(·, xi)wi , f
′

⟩
F

= ⟨f0, f ′⟩F +
n∑

i=1

wi

⟨
h(·, xi), f ′

⟩
F
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is a sum of normal random variables, and therefore ⟨f, f ′⟩F is normally distributed for
any f ′ ∈ F . The mean µ ∈ F of this random vector f satisfies E⟨f, f ′⟩F = ⟨µ, f ′⟩F for
all f ′ ∈ Fn, but

E⟨f, f ′⟩F = ⟨f0, f ′⟩F + E
[

n∑
i=1

wi

⟨
h(·, xi), f ′

⟩
F

]

= ⟨f0, f ′⟩F +
n∑

i=1

���*
0

Ewi

⟨
h(·, xi), f ′

⟩
F

= ⟨f0, f ′⟩F ,

so µ ≡ f0.

Following Definition 2.16 (p. 52), the covariance between two evaluation functionals
of f is shown to satisfy

Cov
(
f(x), f(x′)

)
= Cov

(
⟨f, h(·, x)⟩F , ⟨f, h(·, x′)⟩F

)
= E

[
⟨f − f0, h(·, x)⟩F ⟨f − f0, h(·, x′)⟩F

]
.

Then, making use of the reproducing property of h for F , we have that

Cov
(
f(x), f(x′)

)
= E

⟨ n∑
i=1

h(·, xi)wi, h(·, x)

⟩
F

⟨
n∑

j=1

h(·, xj)wj , h(·, x′)

⟩
F


= E

 n∑
i=1

n∑
j=1

wiwj ⟨h(·, x), h(·, xi)⟩F
⟨
h(·, x′), h(·, xj)

⟩
F


=

n∑
i=1

n∑
j=1

ψijh(x, xi)h(x
′, xj),

which is the reproducing kernel for Fn. ■

In closing, we reiterate the fact that the I-prior for f in the normal regression model
subject to f belonging to some RKKS F with kernel hη has the simple representation

f(xi) = f0(xi) +

n∑
k=1

hη(xi, xk)wk

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ).

(3.7)

Equivalently, this may be written as a Gaussian process-like prior

(
f(x1), . . . , f(xn)

)⊤ ∼ N(f0,HηΨHη), (3.8)

where f0 =
(
f0(x1), . . . , f0(xn)

)⊤ is the vector of prior mean functional evaluations, and
Hη =

(
hη(xi, xj)

)n
i,j=1

is the kernel matrix.
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3.6 Conclusion

In estimating the regression function f of the normal model in (1.1) subject to (1.2) and f
belonging to an RKKS F , we established that the entropy maximising prior distribution
for f is Gaussian with some chosen prior mean f0, and covariance function proportional6

to the Fisher information for f . We call this the I-prior for f .

The concept of Fisher information for a regression function f is brought about by
viewing the regression model (1.1) subject to (1.2) as being parameterised by f . One
caveat is that the dimension of the function space F to which f belongs is potentially
infinite-dimensional, in which case the tools such as Fréchet and Gâteaux differentials
are necessary in order to calculate first and second derivatives.

On a related note, should F be infinite dimensional, the task of estimating f ∈
F relies only on a finite amount of data points. However, we are certain that the
Fisher information for f exists only for the finite subspace Fn as defined in (3.4), and
it is zero everywhere else. This suggests that the data only allows us to provide an
estimation to the function f ∈ F by considering functions in an (at most) n-dimensional
subspace instead. In other words, it would be futile to consider functions in a space
larger than this, and hence there is an element of dimension reduction here, especially
when dim(F) ≫ n.

By equipping the subspace Fn with the inner product (3.5), Fn is revealed to be an
RKHS with reproducing kernel equal to the Fisher information for f . Importantly, since
Fn as in (3.4) is the pre-Hilbert space whose completion as n → ∞ is F , functions in
the subspace Fn contain “similarly shaped” functions as in the parent space F . The
problem at hand then boils down to a Gaussian process regression using the kernel of
the RKHS Fn, which is the Fisher information for f .

6Proportionality, rather than equality, is a consequence of any RKHS scale parameters that F may
have.
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