
Chapter 4

Regression with I-priors

In the previous chapter, we defined an I-prior for the normal regression model (1.1)
subject to (1.2) and f belonging to a reproducing kernel Hilbert or Kreĭn space (RKHS/
RKKS) of functions F , as a Gaussian distribution on f with covariance function pro-
portional to the Fisher information for f . We also saw how new function spaces can be
constructed via the polynomial and ANOVA RKKSs. In this chapter, we shall describe
various regression models, and identify the regression function in each of these models
as belonging to an appropriate RKKS, so that an I-prior may be defined.

Methods for estimating I-prior models are described in Section 4.2. Estimation here
refers to obtaining the posterior distribution of the regression function under an I-prior,
while optimising the kernel parameters of F and the error precision Ψ. Likelihood based
methods, namely direct optimisation of the likelihood and the expectation-maximisation
(EM) algorithm, are the preferred estimation methods of choice. Having said this, it is
also possible to estimate I-prior models under a full Bayesian paradigm by employing
Markov chain Monte Carlo (MCMC) methods to sample from the relevant posterior
densities. Once estimation is completed, post-estimation procedures such as inference
and prediction for a new data point can be done. This is described in Section 4.4.

Careful considerations of the computational aspects are required to ensure efficient
estimation of I-prior models, and these are discussed in Section 4.3. The culmination
of the computational work on I-prior estimation is the iprior package (Jamil, 2017),
which is a publicly available R package that has been published to the Comprehensive
R Archive Network (CRAN).

Finally, several examples of I-prior modelling are presented in Section 4.5, in partic-
ular, a multilevel data set, a longitudinal data set, and a data set involving a functional
covariate, are analysed using the I-prior methodology. Code for replication is available
at http://myphdcode.haziqj.ml.
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4.1 Various regression models

In the introductory chapter (Section 1.1, p. 34), we described several interesting regres-
sion models. The goal of this section is to formulate the I-prior model that describes each
of these regression problems. This is done by thoughtfully choosing the RKHS/RKKS F
of real functions over a set X to which the regression function f belongs. Without loss
of generality and for simplicity, assume a prior mean of zero for the I-prior distribution.

4.1.1 Multiple linear regression

Let X ≡ Rp be equipped with the regular Euclidean dot product, and Fλ be the scaled
canonical RKHS of functions over X with kernel hλ(x,x′) = λx⊤x′, for any two x,x′ ∈
Rp. Then, an I-prior on f implies that

f(xi) =
n∑

j=1

λx⊤
i xjwj

=
n∑

j=1

λ

(
p∑

k=1

xikxjk

)
wj

= β1xi1 + · · ·+ βpxip,

where each βk := λ
∑n

j=1 xjkwj . This implies a multivariate normal prior distribution
for the regression coefficients

β := (β1, . . . , βp) ∼ Np(0, λ2X⊤ΨX), (4.1)

where X is the n × p design matrix for the covariates, excluding the column of ones at
the beginning typically reserved for the intercept. As expected, the covariance matrix
for β is recognised as the scaled Fisher information matrix for the regression coefficients.

If the covariates are not measured similarly, e.g. weights in kilograms, heights in
metres, etc., then it makes sense to introduce multiple scale parameters λk to account
for the differences in scale. One could decompose the regression function into

f(xi) = f1(xi1) + · · ·+ fp(xip)

for which f ∈ Fλ ≡ Fλ1 ⊕ · · · ⊕Fλp , and Fλk
, k = 1, . . . , p are unidimensional canonical

RKHSs with kernels hλk
(xik, xjk) = λkxikxjk. In effect, we now have p scale parameters,

one for each of the RKHSs associated with the p covariates. The RKKS Fλ therefore
has kernel

h(xi,xj) =

p∑
k=1

λkxikxjk,
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and hence each regression coefficient can now be written as βk =
∑n

j=1 λkxjkwj , for
which we see the λk’s scaling role on the xjk’s. Thus, the corresponding I-prior for β is

β ∼ Np(0,X⊤ΛΨΛX),

with Λ = diag(λ1, . . . , λp). Note that Fλ can be seen as a special case of the ANOVA
RKKS, in which only the main effects are considered. Thusly, the centred canonical
RKHSs containing zero-mean functions should be considered instead, in order to satisfy
the functional ANOVA decomposition (see Definition 2.35, p. 78 and Definition 2.36,
p. 79). This approach is disadvantageous when p is large, in which case there would be
numerous scale parameters to estimate.

Remark 4.1. Of course, one could simply turn to standardisation of the X variables,
so as to make the variables measure on the same scale. We feel this is a rather ad-
hoc approach which creates meaningless units (they are standard deviations) for the
covariates which are then fiddly to interpret. Small sample bias and non-normality are
also valid concerns when scaling data. On the other hand, there is a balance to be
made between elegance and feasibility. With large p, standardising is much simpler
and computationally less burdensome than estimating p individual scale parameters. In
Chapter 6, where we tackle the problem of Bayesian variable selection using I-priors in
linear models, standardisation of the variables is done for the sake of streamlining the
Gibbs sampler.

Remark 4.2. The I-prior for β in (4.1) bears resemblance to the g-prior (Zellner, 1986),
and in fact, the g-prior can be interpreted as an I-prior if the inner product of X is the
Mahalonobis inner product. See Appendix E (p. 291) for a discussion.

4.1.2 Multilevel linear modelling

Let X ≡ Rp, and suppose that alongside the covariates, there is information on group
levels M = {1, . . . ,m} for each unit i. That is, every observation for unit i is known to
belong to a specific group j, and we write x(j)

i to indicate this. Let nj denote the sample
size for cluster j, and the overall sample size be n =

∑m
j=1 nj . When modelled linearly

with the responses y(j)i , the model is known as a multilevel (linear) model, although
it is known by many other names: random-effects models, random coefficient models,
hierarchical models, and so on. As this model is seen as an extension of linear models,
application is plentiful, especially in research designs for which the data varies at more
than one level.

Consider a functional ANOVA decomposition of the regression function as follows:

f(x(j)
i , j) = α+ f1(x(j)

i ) + f2(j) + f12(x(j)
i , j). (4.2)
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To mimic the standard linear multilevel model, assume f1 ∈ F1 the Pearson RKHS,
f2 ∈ F2 the centred canonical RKHS, and f12 ∈ F12 = F1 ⊗ F2, the tensor product
space of F1 and F2. As we know, α is the overall intercept, and the varying intercepts
are given by the function f2. While f1 is the (main) linear effect of the covariates, f12
provides the varying linear effect of the covariates by each group. The I-prior for f − α
is assumed to lie in the function space F − α, which is an ANOVA RKKS with kernel

hλ
(
(x(j)

i , j), (x(j′)
i , j′)

)
= λ1h1(x(j)

i ,x(j′)
i′ ) + λ2h2(j, j

′) + λ1λ2h1(x(j)
i ,x(j′)

i′ )h2(j, j
′),

with h1 the centred canonical kernel and h2 the Pearson kernel. The reason for not
including an RKHS of constant functions in F is because the overall intercept is usually
simpler to estimate as an external parameter (see Section 4.2.1).

We can show that the regression function (4.2) corresponds to the standard way of
writing the multilevel model,

f(x(j)
i , j) = β0 + x(j)⊤

i β1 + β0j + x(j)⊤
i β1j . (4.3)

and determine the prior distributions on (β0j ,β
⊤
1j)

⊤ ∈ Rp+1. For the interested reader,
the details are in Appendix F.1 (p. 293). The standard multilevel random effects
assumption is that (β0j ,β

⊤
1j)

⊤ is normally distributed with mean zero and covariance
matrix Φ. In total, there are p+1 regression coefficients and (p+1)(p+2)/2 covariance
parameters in Φ to be estimated. In contrast, the I-prior model is parameterised by
only two RKKS scale parameters—one for F1 and one for F2—and the error precision
Ψ, which is usually proportional to the identity matrix. While the estimation procedure
for Φ in the standard multilevel model can result in non-positive covariance matrices, the
I-prior model has the advantage that positive definiteness is taken care of automatically1.

As a remark, the following regression functions are nested

• f(x(j)
i , j) = α+ f1(x(j)

i ) + f2(j) (random intercept model);

• f(x(j)
i , j) = α+ f1(x(j)

i ) (linear regression model);

• f(x(j)
i , j) = α+ f2(j) (ANOVA model);

• f(x(j)
i , j) = α (intercept only model),

and thus one may compare likelihoods to ascertain the best fitting model. In addition,
one may add flexibility to the model in two possible ways:

1. More than two levels. The model can be easily adjusted to reflect the fact that
that the data is structured in a hierarchy containing three or more levels. For the

1By virtue of the estimate of the regression function belonging to Fn, an RKHS with a positive
definite kernel equal to the Fisher information for f . The first example in Section 4.5 is an instance of
such cases.
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three level case, let the indices j ∈ {1, . . . ,m1} and k ∈ {1, . . . ,m2} denote the
two levels, and simply decompose the regression function accordingly:

f(x(j,k)
i , j, k) = α+ f1(x(j,k)

i ) + f2(j) + f3(k) + f12(x(j,k)
i , j) + f13(x(j,k)

i , k)

+ f23(j, k) + f123(x(j,k)
i , j, k).

2. Covariates not varying with levels. Suppose now we would like to add covari-
ates with a fixed effect to the model, i.e. covariates z(j)i which are not assumed to
affect the responses differently in each group. The regression function would be:

f(x(j)
i , j, zj) = α+ f1(x(j)

i ) + f2(j) + f3(z(j)i ) + f12(x(j)
i , j).

This can be seen as a limited functional ANOVA decomposition of f .

4.1.3 Longitudinal modelling

Longitudinal or panel data observes covariate measurements xi ∈ X and responses yi(t) ∈
R for individuals i = 1, . . . , n across a time period t ∈ {1, . . . , T} =: T . Often, the time
indexing set T may be unique to each individual i, so measurements for unit i happens
across a time period {ti1, . . . , tiTi} =: Ti—this is known as an unbalanced panel. It is
also possible that covariate measurements vary across time too, so appropriately they
are denoted xi(t). For example, xi(t) could be repeated measurements of the variable
xi at time point t ∈ Ti. The relationship between the response variables yi(t) at time
t ∈ Ti is captured through the equation

yi(t) = f
(
i, xi, t

)
+ ϵi(t)

where the distribution of ϵi =
(
ϵi(ti1), . . . , ϵi(tiTi)

)⊤ is Gaussian with mean zero and co-
variance matrix Ψi. Assuming Ψi = ψiITi or even Ψi = ψITi are perfectly valid choices,
even though this seemingly ignores any time dependence between the observations. In
reality, the I-prior induces time dependence of the observations via the kernels in the
prior covariance matrix for f . Additionally, the random vectors ϵi and ϵi′ are assumed
to be independent for any two distinct i, i′ ∈ {1, . . . , n}.

Motivated by a functional ANOVA decomposition, we obtain

f(i, xi, t) = α+ f1(i) + f2(xi) + f3(t) + f13(i, t) + f23(xi, t) + f12(i, xi)

+ f123(i, xi, t)
(4.4)

where α is an overall constant, and each of the ANOVA component functions belongs
to the appropriate (tensor product) space as described in Section 2.5.3 (p. 74). F1
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is the Pearson RKHS, but choices for F2 and F3 are plentiful. In fact, any of the
RKHS/RKKS described in Chapter 3 can be used to either model a linear dependence
(canonical RKHS), nominal dependence (Pearson RKHS), polynomial dependence (poly-
nomial RKKS) or smooth dependence (fBm or SE RKHS) on the xi’s and t’s on f .

4.1.4 Classification

We describe a naïve classification model using I-priors. Here, the responses are categor-
ical yi ∈ {1, . . . ,m} =:M, and additionally, write yi· = (yi1, . . . , yim)⊤ where the class
responses yij equal one if individual i’s response category is yi = j, and zero otherwise.
In other words, there is exactly a single ‘1’ at the j’th position in the vector yi·, and
zeroes everywhere else. For j = 1, . . . ,m, we model

yij = α+

f(xi,j)︷ ︸︸ ︷
αj + fj(xi) + ϵij

(ϵi1, . . . , ϵim)⊤
iid∼ Nm(0,Ψ−1).

(4.5)

The idea here is to model the class responses yij using class-specific regression functions,
in which class responses are assumed to be independent among individuals, but may or
may not be correlated among classes for each individual. The class correlations manifest
themselves in the variance of the errors Ψ−1, which is an m×m matrix.

Denote the regression function f in (4.5) on the set X ×M as f(xi, j) = αj + fj(xi).
This regression function corresponds to an ANOVA decomposition of the spaces FM

and FX of functions over M and X respectively. That is, F = FM ⊕ (FM ⊗ FX ) is a
decomposition into the main effects of class, and an interaction effect of the covariates
for each class. Let FM and FX be RKHSs respectively with kernels a :M×M → R
and bη : X × X → R. Then, the ANOVA RKKS F possesses the reproducing kernel
hη : (X ×M)2 → R as defined by

hη
(
(x, j), (x′, j′)

)
= a(j, j′) + a(j, j′)bη(x, x

′), (4.6)

which leaves the α to be estimated separately (see Section 4.2.1). The kernel bη may be
any of the kernels described in this thesis, ranging from the linear kernel, to the fBm
kernel, or even an ANOVA kernel. Choices for a :M×M→ R include

1. The Pearson kernel (as defined in Definition 2.33, p. 69). With J ∼ P, a
probability measure over M,

a(j, j′) =
δjj′

P(J = j)
− 1.
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2. The centred identity kernel. With δ denoting the Kronecker delta function,

a(j, j′) = δjj′ − 1/m.

The purpose of either of these kernels is to contribute to the class intercepts αj , and to
associate a regression function in each class. The only difference between the two is the
inverse probability weighting per class that is applied in the Pearson kernel, but not in
the identity kernel.

With f ∈ F (the RKKS with kernel hη), it is straightforward to assign an I-prior on
f . It is in fact

f(xi, j) =
m∑

j′=1

n∑
i′=1

a(j, j′)
(
1 + bη(xi, xi′)

)
wi′j′

(wi′1, . . . , wi′m)⊤
iid∼ Nm(0,Ψ)

(4.7)

assuming a zero prior mean f0(x, j) = 0. The model then classifies the i’th data point
to class j if ŷij = max(ŷi1, . . . , ŷim), where ŷik = α̂+ f̂(xi, k), the prediction for the k’th
component of yi.

There are several drawbacks to using the model described above. Unlike in the case
of continuous response variables, the normal I-prior model is highly inappropriate for
categorical responses. For one, it violates the normality and homoscedasticity assump-
tions of the errors. For another, predicted values may be out of the range [0,m] and thus
poorly calibrated. Furthermore, it would be more suitable if the class probabilities—
the probability of an observation belonging to a particular class—were also part of the
model. In Chapter 5, we propose an improvement to this naïve I-prior classification
model by considering a probit-like transformation of the regression functions.

4.1.5 Smoothing models

Single- and multi-variable smoothing models can be fitted under the I-prior methodology
using the fBm RKHS. In standard kernel based smoothing methods, the squared expo-
nential kernel is often used, and the corresponding RKHS contains analytic functions.
There are several attractive properties of using the fBm RKHS, and for one-dimensional
smoothing, which are discussed below.

Assume that, up to a constant, the regression function lies in the scaled, centred
fBm RKHS F of functions over X ≡ R with Hurst index 1/2. Additionally, assume
independent and identical (iid) error precisions, i.e. Ψ = ψIn. Thus, with a centring
with respect to the empirical distribution Pn of {x1, . . . , xn} and using the absolute norm
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on R, F has kernel

hλ(x, x
′) =

λ

2n2

n∑
i=1

n∑
j=1

(
|x− xi|+ |x′ − xj | − |x− x′| − |xi − xj |

)
.

As proven by van der Vaart and van Zanten (2008, Sec. 10), F contains absolutely
continuous functions possessing a square integrable weak derivative satisfying f(0) = 0.
The norm is given by ∥f∥2F =

∫
ḟ2 dx. The posterior mean of f based on an I-prior is

then a (one-dimensional) smoother for the data. For f of the form f =
∑n

i=1 h(·, xi)wi,
i.e. f ∈ Fn, the finite subspace of F as in Section 3.4 (p. 93), then Bergsma (2018)
shows that f can be represented as

f(x) =

∫ x

−∞
β(t)dt (4.8)

where

β(t) =
∑

i∈{k|xk≤t}

wi =
f(xit+1)− f(xit)

xit+1 − xit
(4.9)

with it = maxxi≤t i. Under the I-prior with an iid assumption on the errors, the wi’s are
zero-meaned normal random variables with variance ψ, so that β as defined above is an
ordinary Brownian bridge with respect to the empirical distribution Pn. The I-prior for
f is piecewise linear with knots at x1, . . . , xn, and the same holds true for the posterior
mean. The implication is that the I-prior automatically adapts to irregularly spaced xi:
in any region where there are no observations, the resulting smoother is linear. This is
explained by the reduced Fisher information about the derivative of the regression curve
in regions with no observation.

In Bergsma (2018), it is shown that the covariance function for β is

Cov
(
β(x), β(x′)

)
= n

(
min{Pn(X < x),Pn(Xn < x′)} − Pn(X < x)Pn(Xn < x′)

)
From this, notice that Var

(
β(x)

)
= Pn(Xn < x)

(
1 − Pn(Xn < x)

)
, which shows an

automatic boundary correction: close to the boundary there is little Fisher information
on the derivative of the regression function β(x), so the prior variance is small. This
will lead to more shrinkage of the posterior derivative of f towards the derivative of the
prior mean f0.

Another advantage of the I-prior methodology is the ability to fit single or multi-
dimensional smoothing models with just two parameters to be estimated: the RKHS
scale parameter λ and the error precision ψ. The Hurst parameter γ ∈ (0, 1) of the
fBm RKHS can also be treated as a free parameter for added flexibility, but for most
practical applications, we find that the default setting of γ = 1/2 performs sufficiently
well.
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Remark 4.3. From (4.8), the prior process for f is thus an integrated Brownian bridge.
This shows a close relation with cubic spline smoothers, which can be interpreted as the
posterior mean when the prior is an integrated Wiener process (Wahba, 1990). Unlike
I-priors however, cubic spline smoothers do not have automatic boundary corrections,
and typically the additional assumption is made that the smoothing curve is linear at
the boundary knots.

4.1.6 Regression with functional covariates

Suppose that we have functional covariates x in the real domain, and that X is a set
of differentiable functions. If so, it is reasonable to assume that X is a Hilbert-Sobolev
space with inner product

⟨x, x′⟩X =

∫
ẋ(t)ẋ′(t)dt, (4.10)

so that we may apply the linear, fBm or any other kernels which make use of inner
products by making use of the polarisation identity. Furthermore, let z ∈ RT be the
discretised realisation of the function x ∈ X at regular intervals t = 1, . . . , T . Then

⟨x, x′⟩X ≈
T−1∑
t=1

(zt+1 − zt)(z′t+1 − z′t). (4.11)

For discretised observations at non-regular intervals {t1, . . . , tT } then a more general
formula to the above one might be used, for instance,

⟨x, x′⟩X ≈
T−1∑
i=1

(zti+1 − zti)(z′ti+1
− z′ti)

ti+1 − ti
. (4.12)

4.2 Estimation

After selecting an RKHS/RKKS F of functions over X suitable for the regression prob-
lem at hand, one then proceeds to estimate the posterior distribution of the regression
function. The I-prior model (1.1) subject to (1.2) and f ∈ F has the simple and conve-
nient representation

yi = α+

f(xi)︷ ︸︸ ︷
f0(xi) +

n∑
k=1

hη(xi, xk)wk + ϵi

(ϵ1, . . . , ϵn)
⊤ ∼ Nn(0,Ψ−1)

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ),

(4.13)
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where f0 : X → R is a function chosen a priori representing the “best guess” of f , and
the dependence of the kernel of F on parameters η is emphasised through the subscript
in hη : X × X → R.

The parameters of the I-prior model are collectively denoted by θ = {α, η,Ψ}. Given
θ and a prior choice for f0, the posterior regression function is determined solely by the
posterior distribution of the wi’s. Using standard multivariate normal results, one finds
that the posterior distribution for w := (w1, . . . , wn)

⊤ is w|y ∼ Nn(w̃, Ṽw), where

w̃ = ΨHηV−1
y (y− α1n − f0) and Ṽw =

(
HηΨHη +Ψ−1

)−1
= V−1

y , (4.14)

using the familiar notation that we introduced in Section 1.4. For a derivation, see
Appendix G.1 (p. 299). By linearity, the posterior distribution for f is also normal.

In each modelling scenario, there are a number of kernel parameters η that need to
be estimated from the data. Assuming that the covariate space is X = X1 × · · · × Xp,
and there is an ANOVA-like decomposition of the function space F into its constituents
spaces F1, . . . ,Fp, then at the very least, there are p scale parameters λ1, . . . , λp for each
of the RKHSs. Depending on the RKHS used, there could be more kernel parameters
that need to be optimised, for instance, the Hurst index for the fBm RKHS, the length-
scale for the SE RKHS, and/or the offset for the polynomial RKKS. However, these may
be treated as fixed parameters as well.

The following subsections describe possible estimation procedures for the hyperpa-
rameters of the model. Henceforth, for simplicity, the following additional standing
assumptions are imposed on the I-prior model (4.13):

A1 Centred responses. Set α = 0 and replace the responses by their centred versions
yi 7→ ỹi = yi − 1

n

∑n
i=1.

A2 Zero prior mean. Assume a zero prior mean f0(x) = 0 for all x ∈ X .

A3 Iid errors. Assume identical and independent error random variables, i.e. Ψ =

ψIn.

Assumptions A1 and A2 are motivated by the discussion in Section 4.2.1. Although
assumption A3 is not strictly necessary, it is often a reasonable one and one that simplifies
the estimation procedure greatly.

4.2.1 The intercept and the prior mean

In most statistical models, an intercept is a necessary inclusion which aids interpretation.
In the context of the I-prior model (4.13), a lack of an intercept would fail to account
for the correct locational shift of the regression function along the y-axis. Further, when
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zero-mean functions are considered, the intercept serves as being the “grand mean” value
of the responses.

The handling of an intercept to the regression model may be viewed in one of two
ways. The first is to view it as a function belonging to the RKHS of constant functions
F∅, and thereby tensor summing this space to F . The second is to simply treat the
intercept as a parameter of the model to be estimated. In the polynomial and ANOVA
RKKSs, we saw that an intercept is naturally induced by the inclusion of an RKHS
of constant functions in their construction. In any of the other RKHSs described in
Chapter 2, an intercept would need to be added separately. These two methods convey
slightly different interpretations of the intercept: in the first method, the intercept is
shrunk by an I-prior, while in the second, it is not. Estimation is also entirely different
for the two methods.

In the first method, the intercept-less RKHS/RKKS F with kernel h is made to
include an intercept by modifying the kernel to be 1 + h. The intercept will then be
implicitly taken care of without having dealt with it explicitly. However, it can be
obtained by realising that for α ∈ F∅ the RKHS of constant functions, then α =

∑n
i=1wi.

On the other hand, consider the intercept as a parameter α to be estimated. Ob-
taining an estimate α using a likelihood-based argument is rather simple. From (4.13),
E yi = α+f0(xi) for all i = 1, . . . , n, so the maximum likelihood (ML) estimate for E y is
its sample mean ȳ = 1

n

∑
i=1 yi, and hence the ML estimate for α is α̂ = ȳ− 1

n

∑n
i=1 f0(xi).

Thus, assumption A1 therefore implies that the ML estimate for the intercept is the sam-
ple mean of the responses (assuming A2 holds).

4.2.2 Direct optimisation

Under assumptions A1–A3, a direct optimisation of the parameters θ = {η,Ψ = ψIn}
using the log-likelihood of θ is straightforward to implement. Denote Σθ := ψH2

η +

ψ−1In = Vy. From (4.13), the marginal log-likelihood of θ is given by

L(θ) = log
∫
p(y|w, θ)p(w|θ)dw

= −n
2

log 2π − 1

2
log |Σθ| −

1

2
ỹ⊤Σ−1

θ ỹ, (4.15)

which is the log-likelihood of a zero-meaned multivariate normal distribution with covari-
ance matrix Σθ. This closed-form expression of the integral (4.15) stems from the fact
that the (conditional) likelihood and the I-prior are both Gaussian. Note that the term
‘marginal’ refers to the fact that we are averaging out the random function represented
by w.
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For Gaussian process regression (GPR), direct optimisation is typically done using
the conjugate gradients method in conjunction with a Cholesky decomposition on the
covariance kernel to maintain stability (Rasmussen and Williams, 2006). We opt for a
quasi-Newton algorithm (L-BFGS algorithm, Nocedal and Wright, 2006) with an eigen-
decomposition of the kernel matrix Hη = V diag(u1, . . . , un)V⊤ instead. This procedure
is relatively robust to numerical instabilities and is better at ensuring positive definite-
ness of the covariance kernel. Since Hη is a symmetric matrix, we have that VV⊤ = In,
and thus

Vy = ψV diag(u21, . . . , u2n)V⊤ + ψ−1VV⊤

= V diag(ψu21 + ψ−1, . . . , ψu2n + ψ−1)V⊤

for which the inverse and log-determinant is easily obtainable. To be explicit, the log-
likelihood is given by

L(θ) = − n

2
log 2π − 1

2

n∑
i=1

log(ψu2i + ψ−1)

− 1

2
ỹ⊤V diag

(
1

ψu21 + ψ−1
, . . . ,

1

ψu2n + ψ−1

)
V⊤ỹ.

(4.16)

The direct optimisation method can be prone to local optima, in which case repeating
the optimisation at different starting points and choosing the one which yields the highest
likelihood is one way around this. On a practical note, parameters are best transformed
so that optimisation of these parameters are done on an unrestricted scale (e.g. logψ).

Figure 4.1: A typical log-likelihood surface plot of I-prior models, in which there are two
ridges. The maximum occurs along one of the two ridges, or sometimes near or at the
intersection. Clearly, different initialisations can lead optimisation algorithms to either
ridge and possibly converge to a local optima.

Regression with I-priors112



Let U be the Fisher information matrix for θ∈Rq. Standard calculations (Lemma C.2,
p. 276) show that under the marginal distribution ỹ ∼ Nn

(
0,Σθ

)
, the (i, j)’th coordi-

nate of U is
uij =

1

2
tr
(
Σ−1

θ

∂Σθ

∂θi
Σ−1

θ

∂Σθ

∂θj

)
, i, j = 1, . . . , q, (4.17)

where the derivative of a matrix with respect to a scalar is the element-wise derivative of
the matrix. With θ̂ denoting the ML estimate for θ, under suitable conditions,

√
n(θ̂ −

θ) has an asymptotic multivariate normal distribution with mean zero and covariance
matrix U−1 (Casella and Berger, 2002). In particular, the standard error for θk is the
k’th diagonal element of U−1/2.

4.2.3 Expectation-maximisation algorithm

Evidently, the model in (4.13) resembles a random-effects model, for which the EM
algorithm is easily employed to estimate its hyperparameters. Assume A1–A3 holds. By
treating the complete data as {y,w} and the wi’s as “missing”, the t’th iteration of the
E-step entails computing

Q(θ) = Ew
(

log p(y,w|θ)
∣∣y, θ(t))

= Ew

(
const. +

����n

2
logψ − ψ

2
∥ỹ−Hηw∥2 −

����n

2
logψ − ψ−1

2
∥w∥2

∣∣∣y, θ(t)) (4.18)

= const.− ψ

2
ỹ⊤ỹ− 1

2
tr
(
(

Σθ︷ ︸︸ ︷
ψH2

η + ψ−1In)W̃(t)
)
+ ψỹ⊤Hηw̃(t),

where w̃(t) = E
(
w|y, θ(t)

)
and W̃(t) = E

(
ww⊤|y, θ(t)

)
are the first and second posterior

moments of w calculated at the t’th EM iteration. These can be computed directly from
(4.14), substituting {η(t), ψ(t)} for θ(t) as appropriate.

The M-step assigns θ(t+1) the value of θ which maximises the Q function above. This
boils down to solving the first order conditions

∂Q

∂η
= −1

2
tr
(
∂Σθ

∂η
W̃(t)

)
+ ψ · ỹ⊤∂Hη

∂η
w̃(t) (4.19)

∂Q

∂ψ
= −1

2
ỹ⊤ỹ− tr

(
∂Σθ

∂ψ
W̃(t)

)
+ ỹ⊤Hηw̃(t) (4.20)

equated to zero. As ∂Σθ/∂ψ = H2
η −ψ−2In, the solution to (4.20) for ψ admits a closed

form given values for η:

ψ(t+1) =

{
tr W̃(t)

ỹ⊤ỹ + tr(H2
ηW̃(t))− 2ỹ⊤Hηw̃(t)

}1/2

. (4.21)
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We use this fact to form a sequential updating scheme η(t) → ψ(t+1) → η(t+1) → · · · ,
and this form of the EM algorithm is known as the expectation conditional maximisation
algorithm (Meng and Rubin, 1993). Now, the solution to (4.19) can also be found in
closed-form given values ψ, for many models, but in general, this is not the case. In
cases where closed-form solutions do exist for η, then it is just a matter of iterating the
update equations until a suitable convergence criterion is met (e.g. no more sizeable
increase in successive log-likelihood values). In cases where closed-form solutions do not
exist for η, the Q function is again optimised with respect to η using the gradient-based
algorithms.

In our experience, the EM algorithm is more stable than direct maximisation, in
the sense that the EM steps increase the likelihood in a gentle manner that prevents
sudden explosions of the likelihood. In contrast, the search direction using gradient-based
methods can grow the likelihood too quickly and potentially causes numerical errors to
creep in. As such, the EM is especially suitable if there are many scale parameters to
estimate, but on the flip side, it is typically slow to converge. The iprior package provides
a method to automatically switch to the direct optimisation method after running several
EM iterations. This then combines the stability of the EM with the speed of direct
optimisation.

4.2.4 Markov chain Monte Carlo methods

For completeness, it should be mentioned that a full Bayesian treatment of the model is
possible, with additional priors on the set of hyperparameters. MCMC methods can then
be employed to sample from the posteriors of the hyperparameters, with point estimates
obtained using the posterior mean or mode, for instance. Additionally, the posterior
distribution encapsulates the uncertainty about the parameter, for which inference can be
made. Posterior sampling can be done using Gibbs-based methods in WinBUGS (Lunn
et al., 2000) or JAGS (Plummer, 2003), and both have interfaces to R via R2WinBUGS
(Sturtz et al., 2005) and runjags (Denwood, 2016) respectively. Hamiltonian Monte
Carlo (HMC) sampling is also a possibility, and the Stan project (Carpenter et al., 2017)
together with the package rstan (Stan Development Team, 2016) makes this possible in
R.

On the software side, all of these MCMC packages require the user to code the model
individually, and we are not aware of the existence of MCMC-based packages which are
able to estimate GPR models. This makes it inconvenient for GPR and I-prior models,
because in addition to the model itself, the kernel functions need to be coded as well
and ensuring computational efficiency would be a difficult task.
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Speaking of efficiency, it is more advantageous to marginalise the I-prior and work
with the marginal model (4.15), rather than the hierarchical specification (4.13). The
reason for this is that the latter model has a parameter space whose dimension is O(n),
while the former only samples the hyperparameters. Note that the marginal model (4.15)
cannot then be sampled efficiently using a Gibbs procedure as the Gibbs conditionals
are not of closed-form. Instead, HMC should be used, which does not depend on model
conjugacy.

4.2.5 Comparison of estimation methods

Consider a one-dimensional smoothing example, for which n = 150 data pairs {(yi, xi)}ni=1

have been generated according to the relationship

yi = const. +

ftrue(xi)︷ ︸︸ ︷
0.35ϕ(xi|1, 0.82) + 0.65ϕ(xi|4, 1.52) + 1(xi > 4.5) e1.25(xi−4.5) + ϵi,

(4.22)

where ϕ(·|µ, σ2) is the probability density function of a normal distribution with mean
µ and variance σ2. The observed yi’s are thought to be noisy versions of the true points,
in which ϵi follows an indescript, non-normal, distribution. The predictors x1, . . . , xn
have been sampled roughly from the interval (−1, 6), and the sampling was intentionally
not uniform so that there is slight sparsity in the middle. Figure 4.2 plots the sampled
points and the true regression function.

α + f t rue(x)
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Figure 4.2: A plot of the sampled data points according to (4.22), with the true regression
function superimposed.
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We attempt to estimate ftrue by a function f belonging to the fBm-0.5 RKHS Fλ, with
an I-prior on f . There are two parameters that need to be estimated: the scale parameter
λ for the fBm-0.5 RKHS, and the error precision ψ. These can be estimated using the
maximum likelihood methods described above, namely by direct optimisation using a
quasi-Newton algorithm, and the EM algorithm. These two methods are implemented
in the iprior package. A full Bayesian treatment is possible, and we use the rstan
implementation of Stan to perform Hamiltonian Monte Carlo sampling of the posterior
densities. A vague prior choice for λ and ψ are prescribed, namely

λ, ψ
iid∼ N+(0, 100),

where N+(0, σ
2) represents the folded-normal distribution2,3. We have also set an im-

proper prior density p(α) ∝ const. for the intercept. The advantage of HMC is that
efficiency is not dictated by conjugacy, so there is freedom to choose any appropriate
prior choice on the parameters. Note that priors for λ and ψ are only applicable in a
fully Bayesian estimation of the I-prior model, and we did not assign any priors in the
EM algorithm or direct optimisation method.

Table 4.1: Table comparing the estimated parameter values, (marginal) log-likelihood
values, and also time taken for the three estimation methods.

Direct optimisation EM algorithm Hamiltonian MC
Intercept (α) 16.1 (0.35) 16.1 (0.35) 16.1 (0.17)
Scale (λ) 5.01 (1.23) 5.01 (1.26) 5.61 (1.42)
Precision (ψ) 0.236 (0.03) 0.236 (0.03) 0.237 (0.03)
Log-density -339.7 -339.7 -341.1
RMSE4 0.574 0.575 0.582
Iterations 12 266 2000
Time taken (s) 0.96 3.65 232

Table 4.1 tabulates the estimated parameter values, (marginal) log-likelihood values,
and also time taken for the three estimation methods. The three methods concur on the
estimated parameter values, although the scale parameter has been estimated slightly
differently, which is possibly attributed to the effect of the prior for λ. The resulting
log-likelihood value for the Bayesian method is lower than the ML methods, which also
took the longest to compute. Although the EM algorithm took longer than the direct
optimisation method to compute, the time taken per iteration is significantly shorter
than one Newton iteration.

2The random variable X ∼ N+(µ, σ
2) has the density p(x) = ϕ(x|µ, σ2)1(x ≥ 0).

3Note that a single scale parameter λ is not identified in sign, and is thus constrained to the positive
reals. This is applicable in both likelihood-based and Bayesian methods.

4The root mean squared error (RMSE) is calculated using the formula RMSE =
√

1
n

∑n
i=1(yi − ŷi)2,

where ŷi is the fitted value for the i’th observation, as described in Section 4.4
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4.3 Computational considerations and implementation

Computational complexity for estimating I-prior models (and in fact, for GPR in general)
is dominated by the inversion (by way of eigendecomposition in our case) of the n × n
matrix Σθ = ψH2

η + ψ−1In, which scales as O(n3) in time. For the direct optimisation
method, this matrix inversion is called when computing the log-likelihood, and thus
must be computed at each Newton step. For the EM algorithm, this matrix inversion
appears when calculating w̃ and W̃, the first and second posterior moments of the I-
prior random effects. Furthermore, storage requirements for I-priors models are similar
to that of GPR models, which is O(n2).

4.3.1 The Nyström approximation

The shared computational issues of I-prior and GPR models allow us to delve into
machine learning literature, which is rich in ways to resolve these issue, as summarised
by Quiñonero-Candela and Rasmussen (2005). One such method is to exploit low rank
structures of kernel matrices. The idea is as follows. Let Q be a matrix with rank q < n,
and suppose that QQ⊤ can be used sufficiently well to represent the kernel matrix Hη.
Then

(ψH2
η + ψ−1In)−1 ≈ ψ

{
In −Q

[(
ψ2Q⊤Q

)−1
+ Q⊤Q

]−1
Q⊤
}
,

obtained via the Woodbury matrix identity, is potentially a much cheaper operation
which scales O(nq2)—O(q3) to do the inversion, and O(nq) to do the multiplication
(because typically the inverse is premultiplied to a vector). When using the linear kernel
for a low-dimensional covariate then the above method is exact (Q = X, where X is the
design matrix). This fact is clearly demonstrated by the equivalence of the p-dimensional
linear model implied by (4.1) with the n-dimensional I-prior model using the canonical
RKHS. If p≪ n then certainly using the linear representation is much more efficient.

However, other interesting kernels such as the fractional Brownian motion (fBm)
kernel or the squared exponential kernel results in kernel matrices which are full rank.
An approximation to the kernel matrix using a low-rank matrix is the Nyström method
(Williams and Seeger, 2001). The theory has its roots in approximating eigenfunctions,
but this has since been adopted to speed up kernel machines. The main idea is to obtain
an (approximation to the true) eigendecomposition of Hη based on a small subset q ≪ n

of the data points.

Let Hη = VUV⊤ =
∑n

i=1 uiviv⊤
i be the (orthogonal) decomposition of the sym-

metric matrix Hη. As mentioned, avoiding this expensive O(n3) eigendecomposition
is desired, and this is achieved by selecting a subset Q of size q of the n data points
{1, . . . , n}, so that Hη may be approximated using the rank q matrix Hη ≈

∑
i∈Q ũiṽiṽ⊤

i .
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Without loss of generality, reorder the rows and columns of Hη so that the data points
indexed by Q are used first:

Hη =

(
Aq×q Bq×(n−q)

B⊤
q×(n−q) C(n−q)×(n−q)

)
.

In other words, the data points indexed by Q forms the smaller q × q kernel matrix A.
Let A = VqUqV⊤

q =
∑q

i=1 u
(q)
i v(q)

i v(q)⊤
i be the eigendeceomposition of A. The Nyström

method provides the formulae for ũi and ṽi (Rasmussen and Williams, 2006, Sec. 8.1,
Eqs. 8.2 and 8.3) as

ũi :=
n

q
u
(q)
i ∈ R

ṽi :=

√
q

n

1

u
(q)
i

(
A B

)⊤
v(q)
i ∈ Rn.

Denoting Uq as the diagonal matrix of eigenvalues u(q)1 , . . . , u
(q)
m , and Vq the correspond-

ing matrix of eigenvectors v(q)
i , we have

Hη ≈

V̄︷ ︸︸ ︷(
Vq

B⊤VqU−1
q

)
Uq

V̄⊤︷ ︸︸ ︷(
V⊤

q U−1
q V⊤

q B
)
.

Unfortunately, it may be the case that V̄V̄⊤ ̸= In, while orthogonality is crucial in order
to easily calculate the inverse of Σθ. An additional step is required to obtain an orthogo-
nal version of the Nyström decomposition, as studied by Fowlkes et al. (2004, 2001). Let
K = A+A− 1

2 B⊤BA− 1
2 , where A− 1

2 = VmU− 1
2

m Vm, and obtain the eigendecomposition
of this m×m matrix K = RÛR⊤. Defining

V̂ =

(
A

B⊤

)
A− 1

2 RÛ− 1
2 ∈ Rn × Rm,

then we have that Hη ≈ V̂ÛV̂⊤ such that V̂V̂⊤ = In (Fowlkes et al., 2004, Appx. A).
Estimating I-prior models with the Nyström method including the orthogonalisation
step takes roughly O(nm2) time and O(nm) storage.

The issue of selecting the subset Q remains. The simplest method, and that which
is implemented in the iprior package, would be to uniformly sample a subset of size q
from the n points. Although this works well in practice, the quality of approximation
might suffer if the points do not sufficiently represent the training set. In this light,
greedy approximations have been suggested to select the q points, so as to reduce some
error criterion relating to the quality of approximation. For a brief review of more
sophisticated methods of selecting Q, see Rasmussen and Williams (2006, Sec. 8.1).
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4.3.2 Front-loading kernel matrices for the EM algorithm

The evaluation of the Q function in (4.18) is O(n3), because a change in the values of
θ requires evaluating Σθ = ψH2

η + ψ−1In, for which squaring Hη takes the bulk of the
computational time. This is disadvantageous because, a Newton or quasi-Newton algo-
rithm used for the M-step would require multiple evaluations of Q in order to complete
an EM update.

In this section, we describe an efficient method of evaluating Q if the I-prior model
only involves estimating the RKHS scale parameters and the error precision under as-
sumptions A1–A3. The premise is this: squaring an ANOVA kernel matrix can be made
more efficient because it is a linear combination of several other kernel matrices, which
can be pre-calculated and stored for multiple use throughout the EM algorithm. We
now describe the procedure in detail.

Corresponding to p building block RKHSs F1, . . . ,Fp of functions over X1, . . . ,Xp,
there are p scale parameters λ1, . . . , λp and reproducing kernels h1, . . . , hp. Assume that
only the scale parameters are to be estimated, and the rest of the kernel parameters
(Hurst coefficient, lengthscale, or offset) are fixed. Write θ = {λ1, . . . , λp, ψ}. The most
common modelling scenarios that will be encountered are listed below:

1. Single scale parameter. With p = 1, f ∈ F ≡ λ1F1 of functions over a set X .
F may be any of the building block RKHSs. Note that X1 itself may be more than
one-dimensional. The kernel over X1 ×X1 is therefore

hλ = λ1h1.

2. Multiple scale parameters. Here, F is an RKKS of functions f : X1×· · ·×Xp →
R, and thus F ≡ λ1F1 ⊕ · · · ⊕ λpFp, where each Fk is one of the building block
RKHSs. The kernel is

hλ = λ1h1 + · · ·+ λphp.

3. Multiple scale parameters with level-2 interactions. This occurs commonly
with multilevel and longitudinal models. Suppose that X1 is the set of ‘levels’ and
there are p − 1 covariate sets Xk, k = 2, · · · , p. The function space F is a special
case of the ANOVA RKKS containing only main and two-way interaction effects,
and its kernel is

hλ =

p∑
j=1

λjhj +
∑
j<k

λjλkhjhk,

where F1 is the Pearson RKHS, and the remaining are any of the building block
RKHSs.
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4. Polynomial RKKS. When using the polynomial RKKS of degree d to incite a
polynomial relationship of the covariate set X1 on the function f ∈ F (excluding
an intercept), then the kernel of F is

hλ =

d∑
k=1

bkλ
k
1h

k
1.

where bk = d!
k!(d−k)! , k = 1, . . . , d are constants.

Of course, many other models are possible, such as the ANOVA RKKS with all p levels
of interactions. What we realise is that any of these scenarios are simply a sum-product
of a manipulation of the set of scale parameters λ = {λ1, . . . , λp} and the set of kernel
functions h = {h1, . . . , hp}.

Let us be more concrete about what we mean by ‘manipulation’ of the sets λ and
h. Define an “instruction operator” which expands out both sets identically as required
by the modelling scenario. Computationally speaking, this instruction could be carried
out through an instructive list Q containing the indices to multiply out. For the four
scenarios above, the list Q are as follows:

1. Q =
{
{1}
}

.

2. Q =
{
{1}, . . . , {p}

}
.

3. Q =
{
{1}, . . . , {p}, {1, 2}, . . . , {p− 1, p}

}
.

4. Q =
{
{1}, {1, 1}, . . . , {

d︷ ︸︸ ︷
1, . . . , 1}

}
.

For the polynomial RKKS in the fourth example, one must also multiply the constants
bk to the λ’s as appropriate. Let q be the cardinality of the set Q, which is the number
of summands required to construct the kernel for F . Denote the instructed sets as
ξ = {ξ1, . . . , ξq} for λ and a = {a1, . . . , aq} for h. We can write the kernel hλ as a linear
combination of ξ and a,

hλ = ξ1a1 + · · ·+ ξqaq.

The reason this is important is because changes in λ for hλ only changes the ξk’s, but not
the ak’s. This allows us to compute and store all of the required n × n kernel matrices
A1, . . . ,Aq by application of the instruction set Q on h, evaluated at all pairs of data
points (xi, xj) ∈ X × X . This process of initialisation need only be done once prior to
commencing the EM algorithm—a step we refer to as ‘kernel loading’.
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Notice that

tr
(
ΣθW̃(t)

)
= tr

(
(ψH2

η + ψ−1In)W̃(t)
)

= ψ tr(H2
ηW̃(t)) + ψ−1 tr W̃(t)

= ψ tr

 q∑
j,k=1

ξjξk
(
AjAk + (AjAk)

⊤)W̃(t)

+ ψ−1 tr W̃(t)

= 2ψ

q∑
j,k=1

ξjξk tr
(

AjAkW̃(t)
)
+ ψ−1 tr W̃(t).

Provided that we have the matrices Ajk = AjAk, j, k = 1, . . . , q in addition to A1, . . . ,Aq

pre-calculated and stored, then evaluating tr
(
AjkW̃(t)

)
= vec(Ajk)

⊤ vec(W̃(t)) isO(n2),
although this only need to be done once per EM iteration. Thus, with the kernels loaded,
the overall time complexity to evaluate Q is O(n2) at the beginning of each iteration,
but roughly linear in ξ thereafter.

In conclusion, we have achieved efficiency at the expense of storage and a potentially
long initialisation phase of kernel loading. In the iprior package, kernel loading is per-
formed using the kernL() command. The storing of the kernel matrices can be very
expensive, especially if the sample size is very large; Figure 4.3 shows the storage cost of
front-loading the kernel matrices for varying number of ANOVA components p = 1, . . . , 5

and sample sizes. On the bright side, once the kernel matrices are stored in hard mem-
ory, the iprior package allows them to be reused again and again. A practical situation
where this might be useful is when we would like to repeat the EM at various initial
values. Although front-loading of kernel matrices increase storage requirements, this is
manageable in practice in modern computer systems for sample sizes of n ≤ 5, 000, and
there is a clear advantage of doing so.

Remark 4.4. The sign of the scale parameters itself are not identified in the model (this is
easily seen when having a single scale parameter in the model since the scale is squared
when it appears in the likelihood) but the relative signs of the scale parameters with
respect to each other is.
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Figure 4.3: Storage cost of front-loading the kernel matrices for varying number of
ANOVA components p = 1, . . . , 5 and sample sizes. Solid lines indicate actual values,
while dotted lines are (linear) extrapolations. Storage requirements increases exponen-
tially, since for p ANOVA components, there are 2p+1 kernel matrices to store in memory.

4.3.3 The exponential family EM algorithm

In the original EM paper by Dempster et al. (1977), the EM algorithm was demonstrated
to be easily administered to complete data likelihoods belonging to the exponential
family for which the maximum likelihood estimates are easily computed. If this is the
case, then the M-step simply involves replacing the unknown sufficient statistics in the
ML estimates with their conditional expectations. Certain I-prior models admit this
property, namely regression functions belonging to the full or limited ANOVA RKKS.
For such models, we can reduce the EM algorithm to a sequential updating scheme of the
latent variables (missing data) and parameters, bypassing the need for a gradient-based
optimisation in the M-step. We describe the implementation of this exponential family
EM below.

Assume A1–A3 applies, and that only the error precision ψ and the RKHS scale
parameters λ1, . . . , λp need to be estimated, i.e. all other kernel parameters are fixed—a
similar situation was described in the previous subsection. For the full ANOVA RKKS,
the kernel can be written in the form

hλ =

p∑
i=1

λihi +
∑
i<j

λiλjhihj + · · ·+
p∏

i=1

λihi

= λk

terms of λk︷ ︸︸ ︷(
hk +

∑
i

λihihk + · · ·+ hk
∏
i ̸=k

λihi

)
+

no λk here︷ ︸︸ ︷∑
i ̸=k

λihi +
∑
i,j ̸=k

λiλjhihj + · · ·+ 0

= λkrk + sk
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where rk and sk are both functions over X ×X , defined respectively as the terms of the
ANOVA kernel involving λk, and the terms not involving λk. The reason for splitting
hλ like this will become apparently momentarily.

Programmatically, this looks complicated to implement in software, but in fact it
is not. Consider again the instruction list Q for the ANOVA RKKS (Example 3, Sec-
tion 4.3.2). We can split this list into two: Rk as those elements of Q which involve the
index k, and Sk as those elements of Q which do not involve the index k. Let ζk, ek be
the sets of λ and h after applying the instructions of Rk, and let ξk and ak be the sets
of λ and h after application of the instruction list Sk. Now, we have

rk =
1

λk

|Rk|∑
l=1

ζlkelk and sk =

|Sk|∑
l=1

ξlkalk,

as real-valued functions defined over X×X . Defining Rk and Sk to be the kernel matrices
with (i, j) entries rk(xi, xj) and sk(xi, xj) respectively, for i, j = 1, . . . , n, we have that

H2
η = λ2kR2

k + λk

Uk︷ ︸︸ ︷(
RkSk + (RkSk)

⊤)+ S2
k.

Consider now the full data log-likelihood for λk, k = 1, . . . , p, conditionally dependent
on the rest of the unknown parameters λ−k = {λ1, . . . , λp}\{λk} and ψ:

L(λk|y,w, λ−k, ψ) = const.− 1

2
tr
(
(ψH2

η + ψ−1In)ww⊤
)
+ ψỹ⊤Hηw (4.23)

= const.− λ2k
ψ

2
tr(R2

kww⊤) + λk

(
ψỹ⊤Rkw− ψ

2
tr(Ukww⊤)

)
.

Notice that the above likelihood is an exponential family distribution with the natural
parameterisation β = (−λ2k, λk) and sufficient statistics T1 and T2 defined by

T1 =
ψ

2
tr(R2

kww⊤) and T2 = ψỹ⊤Rkw− ψ

2
tr(U2

kww⊤).

This likelihood is maximised at λ̂k = T2/2T1, but of course, the variables w1, . . . , wn

are never observed. As per the exponential family EM routine, replace occurrences of
w and ww⊤ with their respective conditional expectations, i.e. w 7→ E(w|y) = w̃
and ww⊤ 7→ E(ww⊤|y) = Ṽw + w̃w̃⊤ as defined in (4.14). The fact that the λk’s have
closed-form expressions, together with the closed-form expression for ψ in (4.21), greatly
simplifies the EM algorithm. At the M-step, one simply updates the parameters in turn,
and as such, there is no maximisation per se.

The exponential family EM algorithm for ANOVA-type I-prior models is summarised
in Algorithm 1. It requires O(n3) computational time at each step, which is spent on
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computing the matrix inverse in the E-step. The M-step takes at most O(n2) time to
compute. Algorithm 1 also requires front-loading of the kernel matrices, which increases
storage requirements. As a remark, it is not necessary that hλ is the full ANOVA RKKS;
any of the examples 1–3 in Section 4.3.2 can be estimated using this method, since they
are seen as special cases of the ANOVA decomposition.

Algorithm 1 Exponential family EM for ANOVA-type I-prior models
1: procedure Initialisation
2: Initialise λ(0)1 , . . . , λ

(0)
p , ψ(0)

3: Compute and store matrices as per Rk and Sk.
4: t← 0
5: end procedure

6: while not converged do
7: procedure E-step
8: w̃← ψ(t)Hη(t)

(
ψ(t)H2

η(t)
+ ψ−(t)In

)−1ỹ
9: W̃←

(
ψ(t)H2

η(t)
+ ψ−(t)In

)−1
+ w̃w̃⊤

10: end procedure

11: procedure M-step
12: for k = 1, . . . , p do
13: T1k ← 1

2 tr(R2
kW̃)

14: T2k ← ỹ⊤Rkw̃− 1
2 tr(U2

kW̃⊤)

15: λ
(t+1)
k ← T2k/2T1k

16: end for
17: T3 ← ỹ⊤ỹ + tr(H2

η(t)
W̃(t))− 2ỹ⊤Hη(t)w̃(t)

18: ψ(t+1) ← tr W̃(t)/T3
19: end procedure
20: t← t+ 1
21: end while

22: {λ̂1, . . . , λ̂p, ψ̂} ← {λ(t)1 , . . . , λ
(t)
p , ψ(t)}

23: return Estimates λ̂1, . . . , λ̂p, ψ̂

Remark 4.5. Another compelling reason to use Algorithm 1 is conjugacy of the exponen-
tial family of distributions. Realise that λk|y,w, λ−k, ψ is in fact normally distributed,
with mean and variance given by T2/2T1 and 1/2T1 respectively. If we were so compelled,
we could assign normal priors on each of the λk’s, then the conditionally dependent log-
likelihood of λk, L(λk|y,w, λ−k, ψ), would have a normal prior log-density involving λk
added on. Importantly, viewed as a posterior log-density for λk, the λk is normally
distributed. The exponential family EM is thus easily modified to compute maximum a
posteriori (MAP) estimates (or penalised ML estimates) of the scale parameters.
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Remark 4.6. The restriction to ANOVA RKKSs is due to the fact that as soon as higher
degrees of the λk’s come into play, e.g. using the polynomial kernel, then the ML
estimates for the λk’s involve solving a polynomial of degree 2d− 1 for FOC equations.
Although this is not in itself hard to do, the elegance of the algorithm, especially viewed
as having the normal conjugacy property for the λk’s, is lost.

4.4 Post-estimation

One of the perks of a (semi-)Bayesian approach to regression modelling is that we are
able to use Bayesian post-estimation machinery involving the relevant posterior dis-
tributions. With the normal I-prior model, there is the added benefit that posterior
distributions are easily obtained in closed form. We describe post-estimation procedures
such as prediction of a new data point, inference surrounding the prediciton, and model
comparison. The plots that are shown in this subsection is a continuation of the example
from Section 4.2.5.

Recall that for the I-prior model (4.13), a regression function f(x) =
∑n

i=1 hη̂(x, xi)w̃i

has the posterior Gaussian distribution specified by the mean and variance of the mul-
tivariate normal w̃i’s given in (4.14). Denote by hη̂(x) the n-vector with entries equal
to hη̂(x, xi). Precisely, the posterior distribution of the regression function is

f(x)|y ∼ N
(

hη̂(x)ŵ,hη̂(x)
⊤(Hη̂Ψ̂Hη̂ + Ψ̂

−1)−1hη̂(x)
)

(4.24)

for any x in the domain of the regression function. Here, the hats on the parameters
indicate the use of the optimised model parameters, i.e. the ML or MAP estimates.

Prediction of a new data point is now described. A priori, assume that ynew =

α̂+ f(xnew)+ ϵnew, where ϵnew ∼ N(0, ψ−1
new), and an I-prior on f . Denote the covariance

between ϵnew and ϵ = (ϵ1, . . . , ϵn)
⊤ by σ⊤

new ∈ Rn. Under an iid model (assumption
A3), then ψnew = ψ = Var ϵi for any i ∈ {1, . . . , n}, and σ⊤

new = 0, but otherwise, these
extra parameters need to be dealt with somehow, either by specifying them a priori or
estimating them again, which seems excessive. In any case, using a linearity argument,
the posterior distribution for ynew is normal, with mean and variance given by

E(ynew|y) = α̂+ E
(
f(xnew)|y

)
+ correction term (4.25)

and

Var(ynew|y) = Var
(
f(xnew)|y

)
+ ψ−1

new + correction term. (4.26)

A derivation is presented in Appendix G.2 (p. 300). Note, that the mean and variance
correction term vanishes under an iid assumption A3. The posterior distribution for
ynew can be used in several ways. Among them, is to construct a 100(1−α)% credibility
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Figure 4.4: Prior (top) and posterior (bottom) sample path realisations of regression
functions drawn from their respective distributions when F is a fBm-0.5 RKHS. At the
very top of the figure, a smoothed density estimate of the x’s is overlaid. In regions
with few data points (near the centre), there is little Fisher information, and hence a
conservative prior closer to zero, the prior mean, for this region.
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interval for the (mean) predicted value ynew using

E(ynew|y)± Φ−1(1− α/2) Var(ynew|y)
1
2 ,

where Φ(·) is the standard normal cumulative distribution function. One could also
perform a posterior predictive density check of the data y, by repeatedly sampling n

points from its posterior distribution. This provides a visual check of whether there are
any systematic deviances between what the model predicts, and what is observed from
the data.

Lastly, we discuss model comparison. Recall that the marginal distribution for y
after integrating out the I-prior for f in model (4.13) is normal. Suppose that we are
interested in comparing two candidate models M0 and M1, each with parameter sets
θ0 and θ1. Commonly, we would like to test whether or not particular terms in the
ANOVA RKKS are significant contributors in explaining the relationship between the
responses and predictors. A log-likelihood comparison is possible using an asymptotic
chi-squared distribution, with degrees of freedom equal to the difference between the
number of parameters in M1 and M0. This is assuming model M0 is nested within M1,
which is the case for ANOVA-type constructions. Note that if two models have the same
number of parameters, then the model with the higher likelihood is preferred.

Remark 4.7. This method of comparing marginal likelihoods can be seen as Bayesian
model selection using empirical Bayes factors, where the Bayes factor of comparing
model M1 against model M0 is defined as

BF(M1,M0) =

∫
p(y|θ̂1, f)p(f)df∫
p(y|θ̂0, f)p(f)df

.

Bayes factor values of greater than one indicate more support for model M1 over M0.
The term ‘empirical’ stems from the fact that the parameters are estimated via an
empirical Bayes approach (maximum marginal likelihood), as opposed to assuming prior
distributions on them and integrating them out.

4.5 Examples

We demonstrate I-prior modelling using three real-data examples, as well as on a toy
data set to illustrate the Nyström method. All of the analyses were conducted in R, and
I-prior model estimation was done using the iprior package (Jamil, 2017). The iprior
package comes documented with usage examples in the vignette. The complete source
code for replication is found at http://myphdcode.haziqj.ml. Note that in all of these
examples, A1–A3 were assumed.
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Figure 4.5: The estimated regression line (solid black) is the posterior mean estimate of
the regression function (shifted by the intercept), which also gives the posterior mean
estimate for the responses y. The shaded region is the 95% credibility interval for
predictions. The true regression line (dashed red) is shown for comparison.
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Figure 4.6: Posterior predictive density checks of the responses: repeated sampling from
the posterior density of the yi’s and plotting their densities allows us to compare model
predictions against observed samples. Note that each line represents the distribution of
all data points {y1, . . . , yn}.
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4.5.1 Random effects models

In this section, a comparison between a standard random effects model and the I-prior
approach for estimating varying intercept and slopes model is illustrated. The example
concerns control data5 from several runs of radioimmunoassays (RIA) for the protein
insulin-like growth factor (IGF-I) (explained in further detail in Davidian and Giltinan,
1995, Sec. 3.2.1). RIA is an in vitro assay technique which is used to measure concentra-
tion of antigens—in our case, the IGF-I proteins. When an RIA is run, control samples
at known concentrations obtained from a particular lot are included for the purpose of
assay quality control. It is expected that the concentration of the control material re-
mains stable as the machine is used, up to a maximum of about 50 days, at which point
control samples from a new batch is used to avoid degradation in assay performance.

R> data(IGF, package = "nlme")
R> head(IGF)

## Grouped Data: conc ~ age | Lot
## Lot age conc
## 1 1 7 4.90
## 2 1 7 5.68
## 3 1 8 5.32
## 4 1 8 5.50
## 5 1 13 4.94
## 6 1 13 5.19

The data consists of IGF-I concentrations (conc) from control samples from 10 dif-
ferent lots measured at differing ages of the lot. The data were collected with the aim
of identifying possible trends in control values conc with age, ultimately investigat-
ing whether or not the usage protocol of maximum sample age of 50 days is justified.
Pinheiro and Bates (2000) remarks that this is not considered a longitudinal problem
because different samples were used at each measurement.

We shall model the IGF data set using the I-prior methodology using the ANOVA-
decomposed regression function

f(age, Lot) = f1(age) + f2(Lot) + f12(age, Lot)

where f1 lies in the linear RKHS F1, f2 in the Pearson RKHS F2 and f12 in the tensor
product space F12 = F1 ⊗ F2. The regression function f then lies in the RKHS F =

F1⊕F2⊕F12 with kernel equal to the sum of the kernels from each of the RKHSs. The
explanation here is that the conc levels are assumed to be related to both age and Lot,
and in particular, the contribution of age on conc varies with each individual Lot. This

5This data is available in the R package nlme (Pinheiro et al., 2017).
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gives the intended effect of a linear mixed-effects model, which is thought to be suitable
in this case, in order to account for within-lot and between-lot variability. We first fit
the model using the iprior package, and then compare the results with the standard
random effects model using the R command lme4::lmer(). The command to fit the
I-prior model using the EM algorithm is

R> mod.iprior <- iprior(conc ~ age * Lot, IGF, method = "em")

## =========================================
## Converged after 58 iterations.

R> summary(mod.iprior)

## Call:
## iprior(formula = conc ~ age * Lot, data = IGF, method = "em")
##
## RKHS used:
## Linear (age)
## Pearson (Lot)
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -4.4890 -0.3798 -0.0090 0.2563 4.3972
##
## Hyperparameters:
## Estimate S.E. z P[|Z>z|]
## lambda[1] 0.0000 0.0002 0.004 0.997
## lambda[2] -0.0007 0.0030 -0.239 0.811
## psi 1.4577 0.1366 10.672 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Closed-form EM algorithm. Iterations: 58/100
## Converged to within 1e-08 tolerance. Time taken: 3.553403 secs
## Log-likelihood value: -291.9033
## RMSE of prediction: 0.8273565 (Training)

To make inference on the covariates, we look at the scale parameters lambda. We see
that both scale parameters for age and Lot are close to zero, and a test of significance
is not able to reject the hypothesis that these parameters are indeed null. We conclude
that neither age nor Lot has a linear effect on the conc levels. The plot of the fitted
regression line in Figure 4.7 does show an almost horizontal line for each Lot.
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Figure 4.7: Plot of fitted regression line for the I-prior model on the IGF data set,
separated into each of the 10 lots.

The standard random effects model, as explored by Davidian and Giltinan (1995)
and Pinheiro and Bates (2000), is

concij = β0j + β1jageij + ϵij(
β0j

β1j

)
∼ N

((
β0

β1

)
,

(
σ20 σ01

σ01 σ21

))
ϵij ∼ N(0, σ2)

for i = 1, . . . , nj and the index j representing the 10 Lots. Fitting this model using
lmer, we can test for the significance of the fixed effect β0, for which we find that it is
not (p-value = 0.627), and arrive at the same conclusion as in the I-prior model.

R> (mod.lmer <- lmer(conc ~ age + (age | Lot), IGF))

## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: conc ~ age + (age | Lot)
## Data: IGF
## REML criterion at convergence: 594.3662
## Random effects:
## Groups Name Std.Dev. Corr
## Lot (Intercept) 0.082507
## age 0.008092 -1.00
## Residual 0.820628
## Number of obs: 237, groups: Lot, 10
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## Fixed Effects:
## (Intercept) age
## 5.374974 -0.002535

R> round(coef(summary(mod.lmer)), 4)

## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.3750 0.1075 41.5757 50.0053 0.0000
## age -0.0025 0.0050 9.5136 -0.5025 0.6267

However, we notice that the package reports a perfect negative correlation between
the random effects, σ01. This indicates a potential numerical issue when fitting the
model—a value of exactly −1, 0 or 1 is typically imposed by the package to force through
estimation in the event of non-positive definite covariance matrices arising. We can
inspect the eigenvalues of the covariance matrix for the random effects to check that
they are indeed non-positive definite. One of the eigenvalues was found to be negative,
so the covariance matrix is non-positive definite.

R> eigen(VarCorr(mod.lmer)$Lot)

## eigen() decomposition
## $values
## [1] 6.872939e-03 -1.355253e-20
##
## $vectors
## [,1] [,2]
## [1,] -0.99522490 -0.09760839
## [2,] 0.09760839 -0.99522490

Degenerate covariance matrices often occur in models with a large number of ran-
dom coefficients, and in cases where values of the variance components are estimated
at the boundary. These are typically solved by setting restrictions which then avoids
overparameterising the model. One advantage of the I-prior method for varying in-
tercept/slopes model is that the positive-definiteness is automatically taken care of.
Furthermore, I-prior models typically require fewer parameters to fit a similar varying
intercept/slopes model—in the above example, the I-prior model estimated only three
parameters, while the standard random effects model estimated a total of six parameters.

It is also possible to “recover” the estimates of the standard random effects model
from the I-prior model, albeit in a slighly manual fashion (refer to Section 4.1.2). Denote
by f j the individual linear regression lines for each of the j = 1, . . . , 10 Lots. Then,
each of these f j has a slope and intercept for which we can estimate from the fitted
regression lines f̂ j(xij), i = 1, . . . , nj . This would give us the posterior mean estimates
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Figure 4.8: A comparison of the estimates for random intercepts and slopes (denoted
as points) using the I-prior model and the standard random effects model. The dashed
vertical lines indicate the fixed effect values.

of the random intercepts and slopes. In order to obtain these intercepts and slopes, we
simply run a best fit line through the I-prior estimated conc values. Furthermore, as σ20
and σ21 represent measures of group variability for the intercepts and slopes respectively,
we can also calculate these manually for the 10 intercepts and slopes of the fitted I-
prior model. In the same spirit, ρ01 = σ01/(σ0σ1), which is the correlation between the
random intercept and slope, can also be calculated.

Figure 4.8 illustrates the differences in the estimates for the random coefficients, while
Table 4.2 illustrates the differences in the estimates for the covariance matrix. Minor
differences do exist, with the most noticeable one being that the slopes in the I-prior
model are categorically estimated as zero. Even so, the conclusions from both models
are similar. We also note that the sign of the estimated correlation ρ01 is the same in
both models.

Table 4.2: A comparison of the estimates for the covariance matrix of the random effects
using the I-prior model and the standard random effects model.

Parameter iprior lmer

σ0 0.012 0.083
σ1 0.000 0.008
ρ01 -0.691 -1.000
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4.5.2 Longitudinal data analysis

We consider a balanced longitudinal data set consisting of weights in kilograms of 60
cows, 30 of which were randomly assigned to treatment group A, and the remaining
30 to treatment group B. The animals were weighed 11 times over a 133-day period;
the first 10 measurements for each animal were made at two-week intervals and the
last measurement was made one week later. This experiment was reported by Kenward
(1987), and the data set is included as part of the package jmcm (J. Pan and Y. Pan,
2017) in R. The variable names have been renamed for convenience.

R> data(cattle, package = "jmcm")
R> names(cattle) <- c("id", "time", "group", "weight")
R> cattle$id <- as.factor(cattle$id) # convert to factors
R> levels(cattle$group) <- c("Treatment A", "Treatment B")
R> str(cattle)

## 'data.frame': 660 obs. of 4 variables:
## $ id : Factor w/ 60 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1..
## $ time : num 0 14 28 42 56 70 84 98 112 126 ...
## $ group : Factor w/ 2 levels "Treatment A",..: 1 1 1 1 1 1 1 1 1 1 ..
## $ weight: int 233 224 245 258 271 287 287 287 290 293 ...

The response variable of interest are the weight growth curves, and the aim is to
investigate whether a treatment effect is present. The usual approach to analyse a
longitudinal data set such as this one is to assume that the observed growth curves are
realizations of a Gaussian process. For example, Kenward (1987) assumed a so-called
ante-dependence structure of order k, which assumes an observation depends on the
previous k observations, but given these, is independent of any preceeding observations.

Using the I-prior, it is not necessary to assume the growth curves were drawn ran-
domly. Instead, it suffices to assume that they lie in an appropriate function class. For
this example, we assume that the function class is the fBm RKHS, i.e. we assume a
smooth effect of time on weight. The growth curves form a multidimensional (or func-
tional) response equivalent to a “wide” format of representing repeated measures data.
In our analysis using the iprior package, we used the “long” format and thus our (uni-
dimensional) sample size n is equal to 60 cows × 11 repeated measurements. We also
have two covariates potentially influencing growth, namely the cow subject id and also
treatment group. The regression model can then be thought of as

weight = α+ f(id, group, time) + ϵ

ϵ ∼ N(0, ψ−1).
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Table 4.3: A brief description of the five models fitted using I-priors.

Model Explanation Formula (weight ~ ...)
1 Growth does not vary with treat-

ment nor among cows
time

2 Growth varies among cows only id * time
3 Growth varies with treatment only group * time
4 Growth varies with treatment and

among cows
id * time + group * time

5 Growth varies with treatment and
among cows, with an interaction ef-
fect between treatment and cows

id * group * time

We assume iid errors, and in addition to a smooth effect of time, we further assume
a nominal effect of both cow id and treatment group using the Pearson RKHS. In the
iprior package, factor type objects are treated with the Pearson kernel automatically,
and the only model option we need to specify is the kernel = "fbm" option for the time
variable. We shall use a default Hurst coefficient of 1/2 for the fBm kernel. Table 4.3
explains the five models we have fitted.

The simplest model fitted was one in which the growth curves do not depend on the
treatment effect or individual cows. We then added treatment effect and the cow id
as covariates, separately first and then together at once. We also assumed that both of
these covariates are time-varying, and hence added also the interaction between these
covariates and the time variable. The final model was one in which an interaction
between treatment effect and individual cows was assumed, which varied over time.

All models were fitted using the mixed estimation method. Compared to the EM
algorithm alone, we found that the combination of direct optimisation with the EM
algorithm fits the model about six times faster for this data set due to slow convergence
of EM algorithm. Here is the code and output for fitting the first model:

R> # Model 1: weight ~ f(time)
R> (mod1 <- iprior(weight ~ time, cattle, kern = "fbm", method = "mixed"))

## Running 5 initial EM iterations
## ======================================================================
## Now switching to direct optimisation
## final value 1394.615062
## converged
## Log-likelihood value: -2789.231
##
## lambda psi
## 0.83592 0.00375
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Table 4.4: Summary of the five I-prior models fitted to the cow data set. Error S.D.
refers to the inverse square root of the error precision, ψ−1/2.

Model Formula
(weight ~ ...)

Log-likelihood Error S.D. Number of
parameters

1 time -2789.23 16.33 1
2 id * time -2789.26 16.31 2
3 group * time -2295.16 3.68 2
4 id * time + group * time -2270.85 3.39 3
5 id * group * time -2249.26 3.90 3

The results of the model fit are summarised in Table 4.4. We can test for a treatment
effect by testing Model 4 against the alternative that Model 2 is true. The log-likelihood
ratio test statistic is D = −2(−2789.26 − (−2270.85)) = 1036.81, which has an asymp-
totic chi-squared distribution with 3 − 2 = 1 degree of freedom. The p-value for this
likelihood ratio test is less than 10−6, so we conclude that Model 4 is significantly better.

We can next investigate whether the treatment effect differs among cows by comparing
Models 5 and 4. As these models have the same number of parameters, we can simply
choose the one with the higher likelihood, which is Model 5. We conclude that treatment
does indeed have an effect on growth, and that the treatment effect differs among cows.
A plot of the fitted regression curves onto the cow data set is shown in Figure 4.9.
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Figure 4.9: A plot of the I-prior fitted regression curves from Model 5. In this model,
growth curves differ among cows and by treatment effect (with an interaction between
cows and treatment effect), thus producing these 60 individual lines, one for each cow,
split between their respective treatment groups (A or B).
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4.5.3 Regression with a functional covariate

We illustrate the prediction of a real valued response with a functional covariate using
a widely analysed data set for quality control in the food industry. The data6 contain
samples of spectrometric curve of absorbances of 215 pieces of finely chopped meat,
along with their water, fat and protein content. These data are recorded on a Tecator
Infratec Food and Feed Analyzer working in the wavelength range 850–1050 nm by the
Near Infrared Transmission (NIT) principle. Absorption data has not been measured
continuously, but instead 100 distinct wavelengths were obtained. Figure 4.10 shows a
sample of 10 such spectrometric curves.
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Figure 4.10: Sample of spectrometric curves used to predict fat content of meat. For
each meat sample the data consists of a 100 channel spectrum of absorbances and the
contents of moisture, fat (numbers shown in boxes) and protein measured in percent.
The absorbance is − log 10 of the transmittance measured by the spectrometer. The
three contents, measured in percent, are determined by analytic chemistry.

For our analyses and many others’ in the literature, the first 172 observations in
the data set are used as a training sample for model fitting, and the remaining 43
observations as a test sample to evaluate the predictive performance of the fitted model.
The focus here is to use the iprior package to fit several I-prior models to the Tecator
data set, and calculate out-of-sample predictive error rates. We compare the predictive
performance of I-prior models against Gaussian process regression and the many other
different methods applied on this data set. These methods include neural networks
(Thodberg, 1996), kernel smoothing (Ferraty and Vieu, 2006), single and multiple index
functional regression models (Chen et al., 2011), sliced inverse regression (SIR) and sliced
average variance estimation (SAVE), multivariate adaptive regression splines (MARS),

6 Obtained from Tecator (see http://lib.stat.cmu.edu/datasets/tecator for details). We used
the version made available in the dataframe tecator from the R package caret (Kuhn et al., 2017).
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partial least squares (PLS), and functional additive model with and without component
selection (FAM & CSEFAM). An analysis of this data set using the SIR and SAVE
methods were conducted by Lian and Li (2014), while the MARS, PLS and (CSE)FAM
methods were studied by Zhu et al. (2014). Table 4.5 tabulates the all of the results
from these various references.

Assuming a regression model as in (4.13), we would like to model the fat content
yi using the spectral curves xi. Let xi(t) denote the absorbance for wavelength t =

1, . . . , 100. From Figure 4.10, it appears that the curves are smooth enough to be
differentiable, and therefore it is reasonable to assume that they lie in the Sobolev-Hilbert
space as discussed in Section 4.1.6. We take first differences of the 100-dimensional
matrix, which leaves us with the 99-dimensional covariate saved in the object named
absorp. The fat and absorp data have been split into *.train and *.test samples, as
mentioned earlier. Our first modelling attempt is to fit a linear effect by regressing the
responses fat.train against a single high-dimensional covariate absorp.train using
the linear RKHS and the direct optimisation method.

R> # Model 1: Canonical RKHS (linear)
R> (mod1 <- iprior(y = fat.train, absorp.train))

## iter 10 value 222.653144
## final value 222.642108
## converged
## Log-likelihood value: -445.2844
##
## lambda psi
## 4576.86595 0.11576

Our second and third model uses polynomial RKHSs of degrees two and three, which
allows us to model quadratic and cubic terms of the spectral curves respectively. We
also opted to estimate a suitable offset parameter, and this is called to iprior() with
the option est.offset = TRUE. Each of the two models has a single scale parameter,
an offset parameter, and an error precision to be estimated. The direct optimisation
method has been used, and while both models converged regularly, it was noticed that
there were multiple local optima that hindered the estimation (output omitted).

R> # Model 2: Polynomial RKHS (quadratic)
R> mod2 <- iprior(y = fat.train, absorp.train, kernel = "poly2",
+ est.offset = TRUE)
R> # Model 3: Polynomial RKHS (cubic)
R> mod3 <- iprior(y = fat.train, absorp.train, kernel = "poly3",
+ est.offset = TRUE)
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Next, we attempt to fit a smooth dependence of fat content on the spectrometric
curves using the fBm RKHS. By default, the Hurst coefficient for the fBm RKHS is set
to be 0.5. However, with the option est.hurst = TRUE, the Hurst coefficient is included
in the estimation procedure. We fit models with both a fixed value for Hurst (at 0.5)
and an estimated value for Hurst. For both of these models, we encountered numerical
issues when using the direct optimisation method. The L-BFGS algorithm kept on
pulling the hyperparameter towards extremely high values, which in turn made the
log-likelihood value greater than the machine’s largest normalised floating-point number
(.Machine$double.xmax = 1.797693e+308). To circumvent this issue, we used the EM
algorithm to estimate the fixed Hurst model, and the mixed method for the estimated
Hurst model. For both models, the stop.crit was relaxed and set to 1e-3 for quicker
convergence, though this did not affect the predictive abilities compared to a more
stringent stop.crit.

R> # Model 4: fBm RKHS (default Hurst = 0.5)
R> (mod4 <- iprior(y = fat.train, absorp.train, kernel = "fbm",
+ method = "em", control = list(stop.crit = 1e-3)))

## ==============================================
## Converged after 65 iterations.
## Log-likelihood value: -204.4592
##
## lambda psi
## 3.24112 1869.32897

R> # Model 5: fBm RKHS (estimate Hurst)
R> (mod5 <- iprior(fat.train, absorp.train, kernel = "fbm", method = "mixed",
+ est.hurst = TRUE, control = list(stop.crit = 1e-3)))

## Running 5 initial EM iterations
## ======================================================================
## Now switching to direct optimisation
## iter 10 value 115.648462
## final value 115.645800
## converged
## Log-likelihood value: -231.2923
##
## lambda hurst psi
## 204.97184 0.70382 9.96498

Finally, we fit an I-prior model using the SE RKHS with lengthscale estimated. Here
we illustrate the use of the restarts option, in which the model is fitted repeatedly
from different starting points. In this case, eight random initial parameter values were
used and these jobs were parallelised across the eight available cores of the machine.
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The additional par.maxit option in the control list is an option for the maximum
number of iterations that each parallel job should do. We have set it to 100, which is the
same number for maxit, but if par.maxit is less than maxit, the estimation procedure
continues from the model with the best likelihood value. We see that starting from eight
different initial values, direct optimisation leads to (at least) two log-likelihood optima
sites, −231.5 and −680.5.

R> # Model 6: SE kernel
R> (mod6 <- iprior(fat.train, absorp.train, est.lengthscale = TRUE,
+ kernel = "se", control = list(restarts = TRUE,
+ par.maxit = 100)))

## Performing 8 random restarts on 8 cores
## ======================================================================
## Log-likelihood from random starts:
## Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7
## -231.5440 -680.4637 -680.4637 -231.5440 -231.5440 -231.5440 -231.5440
## Run 8
## -231.5440
## Continuing on Run 6
## final value 115.771932
## converged
## Log-likelihood value: -231.544
##
## lambda lengthscale psi
## 96.11708 0.09269 6.15432

Predicted values of the test data is obtained using predict(). An example for
obtaining the first model’s predicted values is shown below. The predict() method for
ipriorMod objects also return the test MSE if the vector of test data is supplied.

R> predict(mod1, newdata = list(absorp.test), y.test = fat.test)

## Test RMSE: 2.890353
##
## Predicted values:
## [1] 43.607 20.444 7.821 4.491 9.044 8.564 7.935 11.615 13.807
## [10] 17.359
## # ... with 33 more values

These results are summarised in Table 4.5. For the I-prior models, a linear effect
of the functional covariate gives a training RMSE of 2.89, which is improved by both
the qudratic and cubic model. The training RMSE is improved further by assuming a
smooth RKHS of functions for f , i.e. the fBm and SE RKHSs. When it comes to out-of-
sample test error rates, the cubic model gives the best RMSE out of the I-prior models
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for this particular data set, with an RMSE of 0.58. This is followed closely by the fBm
RKHS with estimated Hurst coefficient (fBm-0.70) and also the fBm RKHS with default
Hurst coefficient (fBm-0.50). The best performing I-prior model is only outclassed by the
neural networks of Thodberg (1996), who also performed model selection using automatic
relevance determination (ARD). The I-prior models also give much better test RMSE
than Gaussian process regression.

Table 4.5: A summary of the root mean squared error (RMSE) of prediction for the I-
prior models and various other methods in literature conducted on the Tecator data set.
Values for the methods under Others were obtained from the corresponding references
cited earlier.

RMSE
Model Train Test
I-prior

Linear 2.89 2.89
Quadratic 0.72 0.97
Cubic 0.37 0.58
Smooth (fBm-0.50) 0.00 0.68
Smooth (fBm-0.70) 0.19 0.63
Smooth (SE-0.09) 0.35 1.85

Gaussian process regressiona

Linear 0.18 2.36
Smooth (SE-7.28) 0.17 2.07

Others
Neural networkb 0.36
Kernel smoothingc 1.49
Single/multiple indices modeld 1.55
Sliced inverse regression 0.90
Sliced average variance estimation 1.70
MARSe 0.88
Partial least squarese 1.01
FAMe 0.92
CSEFAMe 0.85

a GPR models were fit using gausspr() in kernlab.
b Neural network best results with automatic relevance determina-

tion (ARD) quoted.
c Data set used was a 160/55 training/test split.
d These are results of a leave-one-out cross-validation scheme.
e Data set used was an extended version with n = 240, and a random

185/55 training/test split.
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4.5.4 Using the Nyström method

We investigate the use of the Nyström method of approximating the kernel matrix in
estimating I-prior models. Let us revisit the data set generated by (4.22) described in
Section 4.2.5. The features of this regression function are two large bumps at the centres
of the mixed Gaussian pdfs, and also a small bump right after x > 4.5 caused by the
additional exponential function. The true regression function tends to positive infinity
as x increases, and to zero as x decreases. Samples of (xi, yi), i = 1, . . . , 2000 have been
generated by the built-in gen_smooth() function, of which the first few lines of the data
are shown below.

R> dat <- gen_smooth(n = 2000, xlim = c(-1, 5.5), seed = 1)
R> head(dat)

## y X
## 1 0.6803514 -2.608953
## 2 3.6747031 -2.554039
## 3 -1.1563508 -2.381275
## 4 2.2657657 -2.280259
## 5 2.5398243 -2.214122
## 6 1.2929592 -2.170532

One could fit the regression model using all available data points, with an I-prior
from the fBm-0.5 RKHS of functions as follows (note that the silent option is used to
suppress the output from the iprior() function):

R> (mod.full <- iprior(y ~ X, dat, kernel = "fbm",
+ control = list(silent = TRUE)))

## Log-likelihood value: -4355.075
##
## lambda psi
## 2.30244 0.23306

To implement the Nyström method, the option nystrom = 50 was added to the func-
tion call, which uses 50 randomly selected data points for the Nyström approximation.

R> (mod.nys <- iprior(y ~ X, dat, kernel = "fbm", nystrom = 50,
+ control = list(silent = TRUE)))

## Log-likelihood value: -1945.33
##
## lambda psi
## 1.64833 0.13538
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Figure 4.11: Plot of predicted regression function for the full model (top) and the Nys-
tröm approximated method (bottom). For the Nyström plot, the data points that were
active are shown by circles with bold outlines.

R> get_time(mod.full); get_size(mod.full, "MB"); get_prederror(mod.full)

## 14.75346 mins
## 128.2 MB
## Training RMSE
## 2.054232

R> get_time(mod.nys); get_size(mod.nys); get_prederror(mod.nys)

## 1.312222 secs
## 982.2 kB
## Training RMSE
## 2.171928
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The hyperparameters estimated for both models are slightly different. The log-
likelihood is also different, but this is attributed to information loss due to the approxi-
mation procedure. Nevertheless, we see from Figure 4.11 that the estimated regression
functions are quite similar in both the full model and the approximated model. The
main difference is that the the Nyström method was not able to extrapolate the right-
hand side of the plot well, because it turns out that there were no data points used
from this region. This can certainly be improved by using a more intelligent sampling
scheme. The full model took a little over 14 minutes to converge, while the Nyström
method took seconds without compromising too much on root mean squared error of
predictions. Storage savings is significantly higher with the Nyström method as well.

4.6 Conclusion

The steps for I-prior modelling are essentially three-fold:

1. Select an appropriate function space (equivalently, kernels) for which specific effects
are desired on the covariates.

2. Estimate the posterior regression function and optimise the hyperparameters, which
include the RKHS scale parameter(s), error precision, and any other kernel param-
eters such as the Hurst index.

3. Perform post-estimation procedures such as

• Posterior predictive checks;

• Model comparison via log-likelihood ratio tests/empirical Bayes factors; and

• Prediction of new data point.

The main sticking point with the estimation procedure is the involvement of the n×n
kernel matrix, for which an inverse is needed. This requires O(n2) storage and O(n3)

computational time. The computational issue faced by I-priors are mirrored in GPR,
so the methods to overcome these computational challenges in GPR can be explored
further. However, most efficient computational solutions exploit the nature of the SE
kernel structure, which is the most common kernel used in GPR. Nonetheless, we suggest
the following as considerations for future work:

1. Sparse variational approximations. Variational methods have seen an active
development in recent times. By using inducing points (Titsias, 2009) or stochastic
variational inference (Hensman et al., 2013), such methods can greatly reduce
computational storage and speed requirements. A recent paper by Cheng and
Boots (2017) also suggests a variational algorithm with linear complexity for GPR-
type models.

Regression with I-priors144



Direct

EM

1

10

100

1000

0 1000 2000 3000 4000 5000

Sample size

T
im

e 
(s

)

Figure 4.12: Average time taken to complete the estimation of an I-prior model (EM
algorithm and direct optimisation) of varying sample sizes. The solid line represents
actual timings, while the dotted lines are linear extrapolations.

2. Accelerating the EM algorithm. Two methods can be explored. The first is
called parameter-expansion EM algorithm (PXEM) by Liu et al. (1998), which has
been shown to be promising for random-effects type models. It involves correcting
the M-step by a “covariance adjustment”, so that extra information can be capi-
talised on to improve convergence rates. The second is a quasi-Newton acceleration
of the EM algorithm as proposed by Lange (1995). A slight change to the EM gra-
dient algorithm in the M-step steers the EM algorithm to the Newton-Raphson
algorithm, thus exploiting the benefits of the EM algorithm in the early stages
(monotonic increase in likelihood) and avoiding the pitfalls of Newton-Raphson
(getting stuck in local optima). Both algorithms require an in-depth reassessment
of the EM algorithm to be tailored to I-prior models.
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