
Chapter 7

Summary

The work done in this thesis explores the concept of regression modelling using priors
dependent on Fisher information covariance kernels (I-priors, Bergsma, 2018). It is
best seen as a flexible regression technique which is able to fit both parametric and
nonparametric models, and bears similarity to Gaussian process regression.

The regression model of the form (1.1) subject to (1.2) is of interest, and this is stated
again for convenience:

yi = α+ f(xi) + ϵi (from 1.1)

(ϵ1, . . . , ϵn) ∼ Nn(0,Ψ−1) (from 1.2)

i = 1, . . . , n.

It is also assumed that the regression function f lies in some reproducing kernel Hilbert
or Kreĭn space (RKHS/RKKS) F with kernel hη defined over the set of covariates X .

In Chapter 2, we built a primer on basic functional analysis, and described various
interesting RKHS/RKKS for regression modelling. We then ascertained the form of the
Fisher information for f , treated as a parameter of the model to be estimated, and from
Corollary 3.3.1 (p. 93), it is

I
(
f(x), f(x′)

)
=

n∑
i,j=1

ψijhη(x, xi)hη(x
′, xj)

= hη(x)
⊤Ψhη(x

′),

for any two points x, x′ in the domain of f , obtained using appropriate calculus for
topological spaces detailed in Chapter 3. An I-prior for f is defined as Gaussian with
mean function f0 chosen a priori, and covariance function equal to the Fisher information.
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The I-prior for f has the simple representation

f(xi) = f0(xi) +

n∑
k=1

hη(xi, xk)wk

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ)

i = 1, . . . , n,

and is written equivalently as the Gaussian process prior

(
f(x1), . . . , f(xn)

)⊤ ∼ Nn(f0,HηΨHη),

where Hη =
(
hη(xi, xj)

)n
i,j=1

.

In Chapter 4, we looked how the I-prior model has wide-ranging applications, from
multilevel modelling, to longitudinal modelling, and modelling with functional covari-
ates. Estimation was conducted mainly using a simple EM algorithm, although direct
optimisation and Bayesian estimation using Markov chain Monte Carlo (MCMC) are
also possible. In the case of polytomous responses, we used a latent variable framework
in Chapter 5 to assign I-priors to latent propensities which drive the outcomes under a
probit-transform scheme. An extension of the EM algorithm was considered, in which
the E-step was replaced with variational inference, so as to overcome the intractability
brought about by the conditional distributions. For both continuous and categorical re-
sponse I-prior models, we find advantages of using I-priors, namely that model building
and estimation is simple, inference straightforward, and predictions comparable, if not
better, to similar state-of-the-art techniques.

Finally, in Chapter 6, we dealt with the problem of model selection, specifically for
linear regression models. There, we used a fully Bayesian approach for estimating model
probabilities in which regression coefficients are assigned an I-prior. We devised a model
that requires minimal tuning on the part of the user, yet performs well in simulated and
real-data examples, even if multicollinearity exists among the covariates.

7.1 Summary of contributions

We give a summary of the novel contributions of this thesis.

• Fisher information for infinite-dimensional parameters. When the RKHS/
RKKS F is infinite dimensional (e.g. covariates are themselves functions), then
the Fisher information involves derivatives with respect to an infinite-dimensional
vector. Finite-dimensional results using componentwise/partial derivatives may
fail in infinite dimensions. The technology of Fréchet and Gâteaux differentials
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accommodate for the fact that f may be infinite dimensional, which, at minimum,
requires F to be a normed vector space. We foresee the work of Section 3.2 being
applicable elsewhere, such as learning in (reproducing kernel) Banach spaces (H.
Zhang et al., 2009; H. Zhang and J. Zhang, 2012), or in the theory of parameter
estimation for general exponential family type distributions of the form

p(y|θ) = B(y) exp
(
⟨θ, T (y)⟩H −A(θ)

)
,

in which θ lies in some inner-product space H which might be infinite dimensional
(Sriperumbudur et al., 2017).

• Efficient estimation methods for normal I-prior models. The preferred
estimation method for normal I-prior models for stability is the EM algorithm.
Implementing the EM algorithm can be computationally costly, due to the squar-
ing and inversion of the kernel matrices in the Q function in (4.18) on page 113.
Unfortunately, not much can be done about the inversion, but we explored system-
atic ways in which to perform the squaring. Combining a “front-loading method”
of the kernel matrices (Section 4.3.2, p. 119) and an exponential family ECM
(expectation conditional maximisation) algorithm (Meng and Rubin, 1993), the
estimation procedure is streamlined. Our computational work culminated in the
publicly available and well-documented R package iprior (Jamil, 2017) published
on CRAN.

• Methodological extension of I-priors to categorical responses. An ex-
tension of the I-prior methodology to fit categorical responses was studied. We
proposed a latent variable framework, in which there corresponds latent propen-
sities for each category of the observations. Instead of modelling the responses
directly, the latent propensities are modelled using an I-prior, and class probabil-
ities obtained using a normal integral. We named this model the I-probit model.
The challenge of estimation was overcoming said integral, and we used a varia-
tional EM algorithm in which the E-step involves a variational approximation of
the intractable conditional density. The variational EM algorithm was preferred
over a fully Bayesian variational inference algorithm for two main reasons: 1) the
work done in the normal I-prior EM algorithm applies directly; and 2) prior spec-
ification for hyperparameters can be dispensed with. Classification, meta-analysis
and spatio-temporal modelling are specific examples of the applications of I-probit
models.

• Distributional results for truncated normals. In deriving the variational
algorithm, some properties related to the conically truncated multivariate inde-
pendent normal distribution (as defined in Appendix C.4, p. 281) were required.
A small contribution of ours was to derive the closed-form expressions for its first
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and second moments, and its entropy (Lemma C.5, p. 283). We have only seen
closed-form expressions of the mean of such a distribution being used before (Giro-
lami and Rogers, 2006) but not for the variance, nor an explicit derivation of these
quantities.

• Bayesian variable selection under collinearity. Model comparison using
likelihood ratio tests or Bayes factors is fine when the number of models under
consideration is fairly small. Under a fully Bayesian scheme, we use MCMC to
approximate posterior model probabilities of competing linear models. At the
outset, we sought a model which required minimal intervention on the part of the
user. The I-prior achieved this, with the added advantage of performing well under
multicollinearity.

7.2 Open questions

In closing, we briefly discuss several questions which remain open during the course of
completing this project.

• Initialisation of EM or gradient-based methods. Figure 4.1 (p. 112) in-
dicates the impact that starting values can have on gradient-based optimisation.
One can end up at a local optima on one of the two ridges. Usually, one of the
ridges will have a higher maximum than the other, but it is not clear how to direct
the algorithm in the direction of the “correct” ridge.

Importantly, the interpretation of a flat ridge in the likelihood is that there is
insufficient information coming from the data to inform parameter estimation.
In the EM algorithm, estimation is usually characterised by a fast increase in
likelihood in the first few steps (as it climbs up the ridge), and then later iterations
only improve the likelihood ever so slightly (as it moves along the ridge in search
of the maximum). In some real-data cases (e.g. Tecator data set), we noticed
that the EM sequence veers to the boundary of the parameter space, where the
likelihood is infinite (e.g. L(ψ) → ∞ as ψ → 0,∞).

Ill-posed problems similar to this are resolved by adding penalty terms to the log-
likelihood. As to what penalty terms are appropriate remains an open question.

• Standard errors for variational approximation. Under a variational scheme,
the log-likelihood function L(θ) is replaced with the evidence lower bound (ELBO)
Lq(θ) which serves as a conservative approximation to it. The question we have is
whether the approximation degrades the asymptotic properties of the estimators
obtained via variational inference? In particular, are the standard errors obtained
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from the information matrix involving Lq(θ) reliable? This question has also been
posed by Bickel et al. (2013), Chen et al. (2018), and Hall et al. (2011).

Variational methods for maximum likelihood learning can be seen as a deliber-
ate misspecification of the model to achieve tractibility. As such, the variational
EM has been referred to as obtaining pseudo- or quasi-ML estimates. The quasi-
likelihood literature has results relating to efficiency of parameter estimates (ad-
justments to the information matrix is needed), and we wonder if these are appli-
cable for variational inference.

Incidentally, obtaining standard errors directly from an EM algorithm is also of
interest, especially under a variational EM setting. Though this is described in
McLachlan and Krishnan (2007, Ch. 4), we have not seen this implemented widely.

• Comparison of logistic and probit links. For general binary and multinomial
models, the logistic link function sees more prevalent use than its probit counter-
part. Of course, we chose the probit as it has distributional advantages which we
can exploit for estimation using variational inference. However, is there a differ-
ence between the behaviour of the probit and logistic model? We know that there
is a difference between the logistic and normal distribution, especially in scaling
and behaviour in the tails, but do these affect the outcome of I-prior models?

• Consistency of I-prior Bayesian variable selection. We wondered about
model selection consistency for I-priors in Bayesian variable selection. That is,
assuming that model Mtrue is actually behind the true data generative process, do

lim
n→∞

P(Mtrue|y) = 1 and lim
n→∞

P(Mk|y) = 0,∀Mk ̸=Mtrue

hold for the I-prior Bayesian variable selection methodology? In machine learning,
this property is referred to as the oracle property. For the g-prior specifically,
model consistency results were obtained by Fernández et al. (2001) and Liang et
al. (2008). Casella et al. (2009) also looks at consistency of Bayesian procedures
for a wide class of prior distributions, but we have yet to examine whether the
I-prior falls under the remit of their work.
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