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These are the responses to the comments and questions raised by the examiners
relating to the thesis submitted for examination (v1.0054d04a8). All references and
page numbers in this document pertain to the amended thesis (v1.1@£378773).

1. Additional details regarding maximum entropy priors.

The central tenet of the thesis is estimating regression functions using a novel
methodology which improves upon Tikhonov regularisation using an objective,

data-dependent prior for the regression function.

For the regression problem (1.1), one could choose to assign a subjective prior
on the regression function. For instance, using Gaussian priors, this is Gaussian

process regression (Rasmussen and Williams, 2006).

Instead, we focus on objective priors, specifically a prior on the regression function
based on the principle of maximum entropy. Jaynes (1957a, 1957b, 2003) argues
that in the absence of any prior knowledge, a probability distribution that max-
imises information entropy (as per Definition 3.5) should be advocated. Entropy-
maximising priors is “uninformative” in the sense that it minimises the amount of

prior information encoded into prior distributions.

In Chapter 3, we show that the entropy maximising prior distribution for the
regression function is Gaussian with covariance kernel proportional to its Fisher
information (hence the name I-prior). This has the intuitive property that the
more Fisher information available regarding the regression function, the larger its
prior variance, and hence lesser influence of the prior mean and more of the data,

and vice versa.

Amendments to thesis: Reworded introductory chapter to better motivate I-priors
(p. 33).

2. How do I-priors benefit from the principle of maximum entropy? Com-

pare to other priors.

Besides being based on the principle of maximum entropy, we have not discovered a
definitive optimality criterion for which the I-prior satisfies. However, our small and

large sample simulations and real-data examples have been promising, especially
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in terms of predictive abilities (as shown by the examples in Section 4.5 (p. 127)
and Section 5.7 (p. 178)).

The prior for the regression function can certainly be chosen based on other ob-
jective principles, and we discuss these briefly. An expanded discussion of these

priors is given in Bergsma (2018).

o The g-prior (Zellner, 1986) for regression coefficients has covariance propor-
tional to the inverse of its Fisher information. This is entirely different from

I-priors, and a comparison is discussed in Chapter 6 and Appendix E.

o Jeffreys prior (Jeffreys, 1946) is proportional to the square root of the de-
terminant of the Fisher information. For large or even potentially infinite-
dimensional regression functions this poses a problem, so practically speaking,

it is only suitable for low-dimensional problems.

o A particular kernel called the Fisher kernel has been used in kernel machines.

Like the I-prior, it also uses Fisher information, but the similarities end there.

3. On the choice of I-priors leading to a finite-dimensional estimator of the

regression function.
In the conclusion section of Chapter 3 (p. 100), I wrote

The dimension of the function space F could be huge, infinite dimen-
sional even, while the task of estimating f € F only relies on a finite
amount of data point. However, we are certain that the Fisher informa-
tion for f exists only for the finite subspace F,, as defined in (3.4), and
it is zero everywhere else. This suggests that the data only allows us to
provide an estimation to the function f € F by considering functions in

an (at most) n-dimensional subspace instead.

In the above, I have alluded to the fact that one need only consider functions in

Fn, 1.e. functions of the form

n

fulw) = Y b, (1
i=1

to estimate the regression function, thus providing an element of dimension reduc-
tion especially when dim(F) > n. The argument for this is as follows (adapter
from Bergsma, 2018). By the orthogonal decomposition theorem, any f € F may
be decomposed into f = f, + r, where f, € F, C F, and r in its orthogonal
complement .7-'7%. Since r € .7-",1l is orthogonal to each of the h(-,z;) € F, we have
that by the reproducing property of h in F, r(z;) = (r,h(-,z;))r = 0.
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The likelihood for f therefore does not depend on r, and since f, is orthogonal
to r, the data do not contain Fisher information regarding r. Thusly, it is not
possible to perform inference on r using the data at hand, and one can only do

statistical inference on f,.
The main details of this argument has been provided in Section 3.4 (p. 93).
4. How to motivate the choice of kernels?

Any kernel, and thus RKHS, can be used with the I-prior methodology. In this
thesis, we chose to study the linear, fBm and Pearson RKHS as the building
blocks, and using these RKHSs we build more complex RKHSs/RKKSs using the
polynomial or ANOVA construction. A short discussion for motivating the choice

of each of these kernels is given below:

e The canonical (linear) kernel produces “straight-line” regression functions,
similar to that of linear regression. This choice of kernel is obviously for

linear problems.

e The Pearson kernel takes discrete covariates as input. This is used for re-
gressing independent variables against categorical covariates, or used in an
ANOVA-type construction to deal with “group” information (e.g. in multi-
level modelling). Other discrete kernels might be used (e.g. identity kernel
or string kernel). The Pearson kernel uses inverse probability weights as a

measure of similarity between two discrete inputs.

e The fBm kernel is used for smoothing problems. Certainly other smooth
kernels can be used, such as squared-exponential kernel, but the fBm kernel

has several desirable properties

(a) Requires only one smoothing parameter (the Hurst coefficient), which
can usually be left at the default of 1/2;

(b) Automatic boundary correction in the sense described in Section 4.1.5 (p.
107); and

(¢) Prior and posterior sample paths under an I-prior are suitably smooth
and not as rough as fBm paths themselves or even functions in an fBm
RKHS.

5. On the connection with Generalised Additive Models (GAMs).

Apart from the additive nature of (4.2) (p. 103), the I-prior methodology is com-
pletely different from additive models or GAMs.

In the I-prior methodology, the principle of decomposing the regression function

into additive parts is the ANOVA functional decomposition. The advantage of this
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is that we are able to also describe two-, three- or higher order interactions, and

this is useful for describing multilevel or longitudinal models.

The focus of additive models or GAMs is to model the relationship of the indepen-
dent variable y and the covariates x through a series one-dimensional smoothers
nonparameterically. Estimation is performed usually using a backfitting algorithm.
There are no assumptions on the function space to which the regression function

belongs.

A brief comparison with GAMs has already been provided in Section 5.8 (p. 195).

. Priors for RKHS scale parameters

On page 116, the stated priors for A (and 1) are only applicable in full Bayesian
estimation of I-prior models. These priors are a suggestion to reflect the ignorance

surrounding the true value of these parameters.

Amendments to thesis: Stronger emphasis that these priors are only applicable to

a full Bayesian analysis, and not the EM algorithm or direct optimisation method.

. Error in Table 4.1, p. 116

The ‘Predictive RMSE’ is not predictive. This has been changed to simply ‘RMSE’,

with the formula now given, which is as follows:

n

RMSE = | -3 (y; — ) @)
i=1

where ¢; is the estimate of the i’th observation, as described in Section 4.4.

. Computational cost of GPR vs I-priors

A comment received from the examiners is as follows: For some univariate GPR
models, computational cost is reduced to O(n) or O(nlogn) if the kernel matrix
is of a specific structure such as tridiagonal or Toeplitz. Inversions of such kernel

matrices would be less than O(n?).

In our experience, we have not come across a kernel matrix with such structures
before, and it is also unlikely to be the case. A Toeplitz-structured kernel matrix
would suggest that the data points are somewhat equally spaced apart, so perhaps

one might encounter such matrices when dealing with time series data.

. On Figure 4.6, p. 128

The posterior predictive density check allows us to compare the distribution of the
observed data with the distribution that is predicted by the model. This is not for
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10.

11.

12.

a single y, but rather each line represents the distribution of all the data points

(observed or replications).
Amendments to thesis: Added a sentence in the caption to clear the confusion.
On recovering regression coefficients in a linear RKHS

[-prior modelling indeed allows us to perform model in a nonparametric manner.
Choosing the RKHS implicitly sets the type of functions being used for regression

modelling.

Specifically for functions in the linear RKHS, one might be interested in obtaining
the slope and intercept of the estimated regression function. One possible reason
for this is to make comparisons to other types of models which uses the slope
and intercept parameterisation explicitly (just like in this example). Ordinarily,
one need not recover the slopes and intercepts in I-prior modelling, but this small

example just indicates that one may do so if they wished.
On the ‘99-dimensional’ covariate, p. 138

The example in Section 4.5.3 (p. 137) concerns functional covariates, that is, each
observed x; is assumed to belong to a function space X. As absorption data had not
been measured continuously, 100 equally-spaced discretised points were measured

and this makes up each data point x;.

As per Section 4.1.6 (p. 109), we make an implicit assumption that X" is a Hilbert-
Sobolev space with inner product given in that section. In order to apply the
linear, fBm or any other kernels which make use of inner products, one should
make the approximation as given by (4.11). It involves taking first differences of

the 100-dimensional covariate, and this reduces to 99 dimensions.
The above has been explained in the second paragraph on page 138.
Would smoother GPR yield better results in the Tecator example?

As we understand it, squared exponential kernels are the de-facto kernels for Gaus-
sian process regression. As seen from the results in Table 4.5 (p. 141), GPR does

not perform well compared to I-priors or any other method for that matter.

Perhaps performance can be improved by using ‘smoother’ kernels. For instance,
the kernlab package in R provides options for the hyperbolic tangent kernel, Lapla-
cian kernel, Bessel kernel, ANOVA Gaussian RBF kernel, and the spline kernel.
It’s not clear which one is best until all of them are tried on the data. Further,
each of these kernels would have additional parameters which need to be tuned as

well.
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13.

14.

15.

16.

17.

This highlights the advantage of I-prior regression using the fBm RKHS for smooth-
ing: good performance with the ‘defacto’ fBm kernel which does not necessarily

require optimising the Hurst coefficient, which simplifies estimation.

Limiting form of I-priors in relation to integrated Brownian motion and

cubic splines

The link between I-priors and integrated Brownian bridge, which has a close re-
lationship with cubic spline smoothers, has been brought up in in Remark 4.3 (p.
109).

The logit link with I-priors

In Chapter 5, the I-prior methodology is extended by way of a ‘probit-like’ link
function on the regression functions. The probit link was chosen as this is compat-
ible with a variational method of estimation—the normality of the distributions

implied by the link function facilitates variational inference.

The logit link is not compatible with the I-prior methodology. As per the latent
variable motivation in Section 5.1, the I-prior is assigned to the latent regression
problem. This latent regression problem is assumed to have normally distributed
errors, which is one of the crucial assumptions of I-prior modelling. This, in turn,
yields the probit link.

A logit link would mean that the errors follow a logistic distribution. This, in

theory, cannot motivate placing an I-prior on the regression function.
On the Laplace approximation for I-probit models

The modes of the Laplace approximation was obtained using a quasi-Newton al-
gorithm. No EM algorithm was used. A suggestion of using integrated nested

Laplace approximations (INLA) was received.
Amendments to thesis: The suggestion of INLA has been noted (p. 157).
Variational inference for logit link

The logit link is not compatible with I-priors (see point 13). Even if it were used, a
different form of variational inference would be required other than the mean-field

variational approximation, e.g. a local variational bound (Bishop, 2006).
Comparing Gaussian process priors

Gaussian process priors for categorical data is often used in a classification setting,
because often, prediction is key. To this end, we did look at binary classification

of cardiac arrhythmia using GPC and a squared exponential kernel. Additionally,
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18.

19.

we will also run the GPC on the vowel recognition data set and include the results
in Table 5.6 (p. 188).

Amendments to thesis: Added GPC to results to Table 5.6.
Additional criticisms to Bayesian variable selection
Amendments to thesis: On page 201, the following was added:

The choice of priors for model parameters affects consistency of Bayesian
model selection procedures. Specifically, improper priors cannot be
used to calculate posterior model probabilities (Casella et al., 2009) —

otherwise, one risks running into Lindley’s paradox (Lindley, 1957).

In the footnotes, a short explanation of the Lindley paradox was included, which

reads

Briefly, in testing a point null hypothesis of the mean of a normally
distributed parameter, the null hypothesis is increasingly accepted as
the prior variance of the parameter approaches infinity, regardless of
evidence for or against the null. The paradox is also termed Jeffreys-
Lindley paradox (Robert, 2014).

Clarification on model-averaged version of 3

On p. 207, a reference was made to “model-averaged” coefficients. In general, any
quantity of interest A can be model-averaged (Madigan and Raftery, 1994), for

which its posterior distribution is given by

p(Aly) = > p(Aly, My)p(Myly). (3)
MreM

The quantity A may be “effect size, a future observable, or the utility of a course
of action” (Hoeting et al., 1999; Madigan and Raftery, 1994). Averaging in such a
manner incorporates model uncertainty into analyses, which avoids overconfidence

of inference surrounding A.

The original motivation for model averaging was to improve upon predictive ac-
curacy. Predictions obtained in such a manner is understood to be the average

prediction over a subset/all models as weighted by posterior model probabilities.

Explanatory inference using model-averaged coefficients on the other hand, is not
practically meaningful. Banner and Higgs (2017) writes that “regression coeffi-
cients... may not hold equivalent interpretations across all of the models in which
they appear”, and one reason for this might be “interpretation of partial regression

coefficients can depend on other variables that have been included in the model”.
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The use of model-averaged effect sizes may result in misleading inferences (Cade,
2015).

The aims of Bayesian variable selection using I-priors is two-fold: 1) to ascertain
variable importance; and 2) prediction using model-averaged regression coefficients.
To this end, we advocate the view of Hoeting et al. (1999) and Madigan and Raftery
(1994) that quantities of interest should be model-averaged to avoid overconfidence,
and we also agree with the assessment of Banner and Higgs (2017) and Cade (2015)

that using model-averaged regression coefficients is meaningless.

To clarify, in our data applications of Sections 6.7.1 and 6.7.2 report the model-
averaged regression coefficients, but no attempt of interpreting these coefficients
were made. The data example in Section 6.7.3 highlights predictive accuracy of
the choice of I-priors in Bayesian variable selection, in which predictive RMSE was
made using model-averaged regression coeflicients. In the simulation study, the
ailm was to assess the performance of the I-prior by looking at the discrepancy
between what the BVS model thinks is the highest probability model, and what

the actual model behind the data generating mechanism was.
Amendments to thesis: The following remark was added on p. 207:

The intention of computing model-averaged regression coefficients @ is
solely for the inclusion of model uncertainty. There is a strong agreement
in the Bayesian variable selection literature that that such coefficients are
practically meaningless when it comes to explanatory inferences. Banner
and Higgs (2017) writes that “regression coefficients... may not hold
equivalent interpretations across all of the models in which they appear”,
and one reason for this might be “interpretation of partial regression
coefficients can depend on other variables that have been included in the
model”. The use of model-averaged effect sizes may result in misleading

inferences (Cade, 2015).
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