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Abstract

This dissertation focusses mainly on the Bradley-Terry model and its extensions to in-
vestigate three aspects of English Premier League football. Firstly, a comparison of the
estimated model rankings with the actual league table will be discussed and how well
the model serves as a predictor of the final standings at the end of the season after sev-
eral games have been played. Secondly, a home advantage analysis of the teams will be
conducted. Thirdly, an estimation of player rankings based on team performances will
be attempted. All analyses were conducted in R using the glm() framework, with the
exception of the third model, which was specifically coded and solved using an optimi-
sation function in R. While the first two analyses generally showed a good fit and clear
results, the third one was not as straightforward. The failure to find stationary points in
the optimisation problem suggests more work needs to be done to refine the model.
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1. Introduction

In pairwise comparison, the items being compared are judged in pairs to see which of the
two is preferred. This method is usually performed to rank the items being compared,
and used commonly in various settings such as wine tasting, beauty pageants, and many
more. While arguably several items could be compared at once, the obvious reason to
apply methods of pairwise comparison is for the simplicity in judging two items, rather
than several items, at once. Pairwise comparison also translates directly to sporting
competitions, whereby two teams or players battle each other to see who comes out the
victor. Many statistical techniques have emerged over the past decades which concerns
the methods of analysing pairwise comparisons.

We start off by giving a brief background to the methods of pairwise comparison.
This leads into an account of the Bradley-Terry model and its various applications. The
whole of Section 2 talks about the Bradley-Terry model in detail, from its definition to
writing out the model’s likelihood function to estimating the parameters by representing
the Bradley-Terry model as a Generalised Linear Model. The final subsection of Section
2 will review the many studies done on the Bradley-Terry model following the work of
Bradley & Terry (1952).

Of the many interesting extensions to the Bradley-Terry model, we will be focusing
on three in particular and applying them to study football data from the English Premier
League. The first one is the model which accommodates ties in pairwise comparisons.
This provides an important infrastructure necessary to analyse football data, which does
contain quite a fair amount of ties between matches. This Bradley-Terry model with
ties is discussed in Section 3. We will then see how estimated rankings of the teams can
begotten from the model, and determine how well it compares with the actual league
table. We will also seek to learn if these estimated rankings can be used as a league table
predictor, based on match results up to certain time points throughout the season.

The second Bradley-Terry extension will be relating to home advantage effects in
pairwise comparisons. This home advantage model has been used as a model for sports
which do not have tied outcomes, such as baseball. We can extend this home advantage
model to include ties, and appropriately apply the model to football data. Two models
will be suggested to analyse home advantage effects in the EPL, and we will look at these
models in Section 4.
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CHAPTER 1. INTRODUCTION

The third model we will be looking at is one that decomposes a team into a collection
of individual players, in some sense working with a mixture of players’ and teams’ data to
infer players’ potential by their estimated ranks. While the first two models will be shown
to be pretty straightforward in terms of acquiring estimates for the models’ parameters,
this third one will be more intricate. We will be encountering some adventurous modelling
in the form of non-linear models with regards to this third model in Section 5.

1.1 Historical background of the methods of pairwise com-
parison

The first form of scientific approach to pairwise comparison was introduced by Thurstone
(1927), in which he called it the ‘Law of Comparative Judgement’. As a psychometrician,
his work was concentrated around psychological preferences and attitudes. His model was
able to rank a collection of stimuli (to some experiment) by considering the distribution
of the difference between the values of the stimuli being compared.

Mosteller (1951a, b, c) developed Thurstone’s work further by considering special
cases of the model, namely when equal standard deviations and correlations are assumed
of the pairs of stimuli. This lead to methods of least squares and χ2-significant testing
of the paired comparisons.

Kendall & Smith (1940) discussed the idea of a combinatorial type pairwise compar-
ison, which involved calculating a coefficient of agreement between comparisons. The
paper also emphasised the importance of the consistency in which items are compared;
ideas in which Luce (1959) established as the choice axioms.

The method of least squares is employed by Guttman (1946) to essentially come up
with a numerical value representing an item’s worth. These items can then be easily
ranked according to these values. Guttman’s work is interesting as it was one of estima-
tion rather than testing hypotheses.

Following the notion of estimation, Bradley & Terry (1952) proposed a model which
assumed that there is an underlying positive valued parameter associated with each item
being compared, which can be thought of representing the item’s worth, similar to the
numerical values estimated by Guttman. Directly translating pairwise comparison over
to sporting competitions, these worth parameters would represent players’ or teams’
abilities. In Bradley & Terry’s paper, they described the special case where only two
items are being compared in a ranking experiment. If a test of no-difference between
them is carried out (based on some attribute), then the test statistic will be based on
a binomial distribution. They then continue to introduce their model based on the
idea of maximising the likelihood of a generalisation of the binomial model. The model
attributed to Bradley & Terry (1952) was also introduced and developed by Zermelo
(1929).
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1.2 Applications of the Bradley-Terry model

In an interesting interview of Ralph A. Bradley by Hollander (2001), Bradley shared the
motivation behind his development of the model, which was organoleptic testing. This is
the conduct of sensory evaluations of flavour, odour, appearance and even ‘mouth feel’,
especially of foods.

Since then, applications have been plentiful. In a paper by Matthews & Morris (1995),
a Bradley-Terry type model is applied to pain measurement by patients responding to
several treatments in order to rank the most preferred treatment. In the genetics field,
Sham & Curtis (2007) use the Bradley-Terry model in their transmission/disequilibrium
test to estimate the probabilities of transmission of alleles from parents to offspring. The
items in this case, or rather ‘players’, are alleles. The favourably ranked alleles by the
Bradley-Terry model is an indication of a dominant allele from the parents.

The Bradley-Terry model is also popular in the area of psychology and behavioural
sciences. Atkinson, Wampold, Lowe, Matthews, & Ahn (1998) studied paired compar-
ison data to analyse Asian-American preferences for counsellor characteristics for both
personal and career problems. More recently, Strobl, Wickelmaier, & Zeileis (2010)
conducted a study to distinguish groups of people who seemingly had the same set of
preferences for the attractiveness of the candidates of the second season of the reality TV
show “Germany’s Next Topmodel”. The underlying model of this recursive partitioning
study was the Bradley-Terry model.

While the Bradley-Terry model was first introduced to model data on preferences
and judgement rating, areas clearly in psychology and choice theory, there are also ref-
erences to sporting tournaments and competitive games. For instance, Zermelo (1929)
was interested in the rating of chess players, which was the basis of discussion in his
work. Agresti (2002) uses Baseball as an example where the Bradley-Terry model might
be fitted to rank the teams competing. In these applications, contests between teams or
players can be thought of synonymously as pairwise preferential judgements of items. A
team is ‘preferred’ over another when that team beats the other in a match. The notion
of ranking the teams or players comes more naturally in sporting events.

In the next section, we shall introduce formally the Bradley-Terry model, and discuss
methods to obtain estimates for the parameters of the model.
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2. The Bradley-Terry model

In pairwise ‘contests’ between n ‘players’ with no ties allowed, it is assumed that there
are positive valued parameters αi, i ∈ {1, . . . , k} attached to each of the players. These
parameters can be thought of as representing the players’ worth or abilities. The Bradley-
Terry model stipulates that in a contest between player i and j,

P[i beats j] =
αi

αi + αj
, (2.1)

for i, j ∈ {1, . . . , k}, i 6= j. A commonly employed convention is to set
∑

i αi = 1 for
convenience (more on this in the next section).

2.1 Maximum likelihood estimation

Suppose out of the nij number of times that player i fights with j, wij is the number of
times that i beats j and wji the number of times that j beats i (so nij = wij + wji =
nji). Define also wi as the total number of wins for player i. For k players, there are(
k
2

)
= k(k − 1)/2 possible pairwise comparisons between players.

We can now write out the likelihood function for the parameters αi, assuming inde-
pendence of the contests, as

L(α1, . . . , αk) =
∏∏
i<j

(
αi

αi + αj

)wij
(

αj
αi + αj

)wji

=
k∏
i=1

αwi
i

∏∏
i<j

(αi + αj)−nij .

(2.2)

The above likelihood function is obtained by considering the probability of the out-
come of a particular match between i and j. Since the outcome of a match can only
either be i or j winning, the corresponding probability would be the expression after the
double product in the first line of equation (2.2) above, with one of wij or wji being 1
and the other 0. Extending this to include the repetitions of matches between i and j,
and multiplying these probabilities for all k(k− 1)/2 possible comparisons of players, we
arrive at the likelihood function in equation (2.2).
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CHAPTER 2. THE BRADLEY-TERRY MODEL

The log-likelihood function l(α1, . . . , αk) is then given by

l(α1, . . . , αk) =
k∑
i=1

wi logαi −
∑∑
i<j

nij log(αi + αj), (2.3)

and the derivatives with respect to αi are easily obtained as

∂l

∂αi
=
wi
αi
−

k∑
j=1
j 6=i

nij
(αi + αj)

. (2.4)

Thus, in order to find the maximum likelihood estimates (MLEs) for this model, we
must obtain solutions to when (2.4) equates to zero, for i = 1, . . . , k, and subject to
the conditions that αi ≥ 0 and

∑k
i=1 αi = 1. The latter condition is included because

the parameters of the model are not identifiable1; it is possible to multiply all of the
parameters by a constant and not change the implied distribution of the model.

In the special case where there are only two players in competition, the MLEs can
be obtained explicitly. When there are two or more players, parameters will have to be
estimated by means of optimisation algorithms. Many iterative procedures have been
discussed in the literature, and one such simple procedure is detailed by Hunter (2004).

Hunter (2004) has also discussed the uniqueness of the solution to equation (2.4). It
was proved that under certain mild conditions, the algorithm used globally converges to
a unique maximum.

2.2 Luce’s choice axiom

When a set of alternative preferences is presented, the response to this set is usually
governed by probabilistic laws. Luce (1959) argued that this isn’t necessarily the case,
and developed the theory of choice and the choice axiom2.

Let N be a finite set of items being compared for which pS , the choice probabilities
on the set S, is defined for each S ⊆ N . Define as well the probability of choosing the
object x from the set X as pX|x. The choice axiom then states the following:

1. If p{a,b} 6= 0, 1 for all a, b ∈ N , then for R ⊂ S ⊂ N , pN |R = pS|R pN |S ;

2. If p{a,b} = 0 for some a, b ∈ N , then for every S ⊂ N , pN |S = pN\{a}|S\{a};

1A parameter θ for a family of distributions {f(x|θ) | θ ∈ Θ} is identifiable if distinct values of θ
correspond to distinct probability density/mass functions. That is, if θ 6= θ′, then f(x|θ) is not the same
function of x as f(x|θ′) (Definition 11.2.2, Casella & Berger, 2002, pp.253).

2Not to be confused with the very important mathematical axiom of choice.
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CHAPTER 2. THE BRADLEY-TERRY MODEL

In simpler terms, the probability of selecting one item over another from a pool of
alternatives is not affected by the absence or presence of other items in the pool. This
axiom is said to be independent of irrelevant alternatives (IIA).

The choice axiom is often encountered in the fields of economics and psychology. In
economics, it can be used to model a consumer’s tendency to choose a particular brand
over another. In psychology, the choice axiom is encountered especially in cognitive
science, where it is used to model some stochastic properties of neural networks.

One interesting consequence of the choice axiom is in fact the Bradley-Terry model
itself. Luce (1959) worked out that the following lemma is an equivalent statement of
the choice axiom:

Lemma 2.2.1. Let N = 1, . . . , n be the set of objects being compared, and pX|x be
the probability of choosing x from the set of objects X. There exists positive valued
v1, v2, . . . , vn such that

pS|i =
vi∑

j∈S
vj

∀i ∈ S ⊆ N . v1, v2, . . . , vn are unique up to multiplication by a constant.

It should be apparent that if we take the set S to be subset of pairwise comparisons
of the items in N , we will arrive at the Bradley-Terry model. What this signifies is that
pairwise comparison modelled using the Bradley-Terry model satisfies some self-evident,
structured framework, namely the Luce choice axiom. We can then be sure that there
will not be any discrepancies in choice making using the Bradley-Terry model.

While this is more important in cases where items are being judged on a preferential
scale, we would expect there not to be any inconsistencies when we look at competition
and sporting events such as football3.

2.3 Representing the Bradley-Terry model as a generalised
linear model

Recall the logistic regression model for binomially distributed data of the form Yi ∼
Bin(ni, pi),

logit pi = log
(

pi
1− pi

)
= β0 + β1x1i + · · ·+ βmxmi,

for i = 1, . . . , k, equivalently written as a logistic function (which incidentally is the
reason behind the name logistic regression)

pi =
[
1 + e−(β0+β1x1i+···+βmxmi)

]−1
.

3Consider three teams, a, b and c. If a always wins against the other two teams, then in the smaller
set where we consider just a and b, a will still come out the victor.
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CHAPTER 2. THE BRADLEY-TERRY MODEL

It was noted by Bradley (1965) that the Bradley-Terry model can be associated with
the logistic distribution function, taking logαi − logαj as the location parameter for
the random variable Zij = Xi −Xj with scale parameter 1. If Xi is a random variable
taken to represent the k items being compared (or players competing), then Zij is the
“difference” between these two entities. Therefore, the probability that i beats j is

P[Xi > Xj ] = P[Zij > 0]

=
[
1 + e−(logαi−logαj)

]−1

=
αi

αi + αj
.

(2.5)

It seems we can relate the Bradley-Terry model to the logistic regression. To see this,
we express the Bradley-Terry model in the form

logit pij|i = log
(

pij|i

1− pij|i

)
= λi − λj , (2.6)

for i, j ∈ {1, . . . , k | i < j}, where keeping with the earlier notation, pij|i is the probability
that i is preferred over/beats j. Since 1 − pij|i = pij|j , we can easily obtain the “log
abilities”, λi = logαi. It is evident from (2.6) that the Bradley-Terry model is a special
form of the logistic regression model. As such, the maximum likelihood estimates can be
computed through the generalised linear model (GLM) framework.

There are no actual measured covariates in the model (2.6), so we will have to stipulate
an appropriate design matrix. We will now specify the components of the GLM.

1. The Random component:

Independent binomial observations of the number of wins when player i competes
with player j, Yij ∼ Bin(nij , pij|i), ∀i, j ∈ {1, . . . , k|i < j}. So E[Yij ] = nijpij|i.

It is easier to work with the binomial proportions, defined as Yij/nij , where it can
be shown that E[Yij/nij ] = pij|i.

2. The Systematic component:

The mean of Yij/nij is modelled as a linear function involving λi − λj . For all
pairwise combinations of players, the coefficients of the linear combination of pa-
rameters are represented in the model matrix X, specified as follows:

For notational purposes, we shall index the rows of X by the double (i, j), indicating
the row in which player i and j competed against each other. These indices will be
in increasing order, i.e. (1,2), (1,3), etc. Thus, X is of dimensions k(k − 1)/2× k.
The entries of X depends on the cases below:

X(i,j),r =


1 if r = i

−1 if r = j

0 otherwise .
(2.7)
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CHAPTER 2. THE BRADLEY-TERRY MODEL

The systematic component is then

Xλ =



index 1 2 3 k−1 k

(1,2) 1 −1 0 · · · 0 0
(1,3) 1 0 −1 · · · 0 0

...
...

...
. . .

...
...

(1,k) 1 0 0 · · · 0 −1
(2,3) 0 1 −1 · · · 0 0

...
...

...
. . .

...
...

(k−1,k) 0 0 0 · · · 1 −1




λ1

λ2
...
λk

 (2.8)

3. The Link function:

The link function is logit. An equivalent statement of equation (2.6) is

logit
[
pij|i

]k
i,j=1
i<j

= Xλ

One advantage for representing the Bradley-Terry model as a GLM is that we can
obtain the MLEs effortlessly by feeding the data and design matrix into a statistical
package. R does this quite easily using the function glm(), and we will be using this
later when a practical example is introduced.

2.4 Extensions to the Bradley-Terry model

Much work has been done to extend the Bradley-Terry model to fit various applications
across different fields. We will discuss some of them here, before looking at a more
practical example in the next section.

2.4.1 Inclusion of ties

The obvious setback in the Bradley-Terry model is that it does not account for ties or
cases of no preference when comparing two items. There is of course the crude method
of counting a tie as half a win for each of the two players involved.

More sophisticated methods to deal with ties are present; one of them being the
extension proposed by Rao & Kupper (1967). The authors present an extra positive
valued parameter dubbed the “threshold parameter”, η, such that if the absolute difference
between responses is less than η, a tie will occur.

8



CHAPTER 2. THE BRADLEY-TERRY MODEL

More completely, if we take Zij = Xi −Xj as in Section 2.3, then the Bradley-Terry
model becomes

P[i beats j] = P[Zij > η] =
αi

αi + eηαj

P[j beats i] = P[Zij < −η] =
αj

eηαi + αj

P[i and j tie] = P[|Zij | < η] =
(e2η − 1)αiαj

(αi + eηαj)(eηαi + αj)

(2.9)

The Bradley-Terry model is obtained when the threshold parameter is equal to 0.

Another such extension to include the possibility of ties in paired comparisons is
the model proposed by Davidson (1970). The model is set up in such a way that the
probability of a tie between players i and j is proportional to the geometric mean of
each of players i and j winning. This constant of proportionality, ν, acts as an index of
discrimination for players’ abilities. We shall be using this model to analyse the English
Premier League, and this model will be introduced fully later in Section 3.

2.4.2 Home advantage effect

Sometimes in paired comparisons, the order in which items are presented may have an
associated bias. For instance, in the case of pairwise taste evaluations, the items tasted
first may have a slight advantage. In the context of sporting examples in particular, this
is known as the ‘home advantage’ effect. A team playing at home will tend to do better
than when they play away. This order-effect model, or the ‘home advantage’ model, is
discussed by Agresti (2002):

P[i beats j at home] =
ραi

ραi + αj

P[i beats j away] =
αi

αi + ραj

(2.10)

The idea is to inflate the odds of i winning against j (αi/αj) by a positive factor ρ if
i is playing at home ground. Of course there could be the case where ρ is in fact unity,
in which case a home advantage does not exist. In the case when ρ is less than 1, a home
‘disadvantage’ exists.

The model (2.10) postulates that a common home advantage effect exists for all
players or items being compared. In sporting events such as football or baseball, this
home advantage effect could vary between teams. We could allow this by introducing k
home advantage parameters ρi - one for each player or team competing - instead of just
the single home advantage parameter ρ. We will be building up on this idea to introduce
two home advantage models later in Section 4.
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CHAPTER 2. THE BRADLEY-TERRY MODEL

2.4.3 Individual ranking in team sports

On the topic of team based sporting competitions, Huang, Weng, & Lin (2006) studied
the idea of ranking individual players based on team performance. The authors called
this the Generalised Bradley-Terry Model. A group of m players forms k < m teams by
taking non-empty, disjoint subsets of the m players. The formation of the teams may
vary from match to match, e.g. a player could be injured and is unable to play in a
particular match. The model suggests that

P
[
team i beats team j

in match h

]
=

∑
r∈team i

for match h

φr

∑
r∈both teams
for match h

φr
, (2.11)

for all i, j ∈ {1, . . . , k}, i 6= j, and all matches between them, where the φis can be
thought of representing the individual players’ abilities.

On the assumption that the outcomes of all comparisons are independent, the esti-
mated abilities for teams are taken to be the sum of the abilities of each individual who
played in that team. Notice that the model reduces to the original Bradley-Terry model
if all teams are treated as individual players.

2.4.4 Multiple comparisons

In some instances, such as voting, a comparison must be made between more than two
items at once. The idea of triple comparisons has been touched on by Pendergrass &
Bradley (1960), whereby they proposed that

P[i � j � k] = P[i � j and i � k] P[j � k]

=
αi

αi + αj + αk
· αj
αj + αk

,
(2.12)

where the notation � means ‘is preferred to’. A more general model was introduced
by Plackett (1975). Suppose that there are m players or items being compared simul-
taneously. Denote Pm as the permutation group for the m items. For a particular
permutation π ∈ Pm, the model is

P[π(1) � · · · � π(m)] =
m∏
r=1

απ(r)

απ(r) + · · ·+ απ(m)
. (2.13)

In the case of pairwise comparisons, this model reduces to the original Bradley-Terry
model, and in the case of triple comparisons, we have the Pendergrass-Bradley model as
in (2.12).
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2.4.5 Introducing covariates

In the original Bradley-Terry model, we might assume that there exists underlying ex-
planatory variables which explain the log abilities. Critchlow & Fligner (1991) gives
a good motivation for the idea of introducing covariates in paired comparison models.
The structure of the Bradley-Terry model makes it easy to incorporate covariates that
may either be categorical or continuous. Goodness of fit statistics can then be compared
between different fits to provide a better understanding of the data.

In Section 2.3 we expressed the Bradley-Terry model as a GLM of the form g(µ) =
Xλ, where λ is the k-vector the log abilities of each player. It is relatively easy to
introduce covariates into models of this type. Suppose now that these parameters are
linearly related to m explanatory variables as such

λi = β1x1i + · · ·+ βmxmi,

where the βis are unknown parameters and xji is the jth covariate for player i. Let C
be the matrix of all the covariates of the players, and β be the vector of βi parameters,

C =


x11 x21 · · · xm1

x12 x22 · · · xm2
...

...
. . .

...
x1k x2k · · · xmk

 , β =


β1

β2
...
βm

 .

Clearly, λ = Cβ, so the GLM becomes g(µ) = (XC)β. The matrix XC represents
the dissimilarity between covariates for the players. Since the data type for the covariates
could be a mixture of categorical, ordinal and continuous type data, a robust form of
dissimilarity calculation must be employed, such as Gower’s distances (1971).

These coefficients, being linear as they are, will be very easily estimated by statistical
packages once the design matrix is constructed.
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3. Bradley-Terry model with ties

In this section, we will be applying the Davidson extension of the Bradley-Terry model
to analyse the English Premier League football results. Let us introduce the Davidson
(1970) model again in the context of the EPL competition. Let αi, i = 1, . . . , k, represent
the ability of the k teams competing and let ν be the tie parameter. The model is:

P[i beats j] =
αi

αi + αj + ν
√
αiαj

P[j beats i] =
αj

αi + αj + ν
√
αiαj

P[i and j tie] =
ν
√
αiαj

αi + αj + ν
√
αiαj

,

(3.1)

for all i, j ∈ {1, . . . k}, i 6= j. Notice that when ν = 0, the original Bradley-Terry
model is obtained. Davidson (1970) also managed to show that his model satisfies Luce’s
choice axiom. This model suggests that the probability of a tie depends very much on
the alphas, which seem to suggest that a tie is influenced mostly on the ability of the
two teams playing as opposed to some other external influence, such as weather, pitch
condition, etc.

In the spirit of the previous notation, let us define the triple pij|i, pij|j and pij|0 as
the probability of a win, loss and tie for team i when they play team j respectively. We
shall refer to this model as the Davidson model.

3.1 Maximum likelihood estimation

As before, let nij be the number of times that team i plays team j and wij the number
of times that i beats j. Define tij as the number of times team i ties when they play
team j. Therefore, nij = wij + wji + tij and nij = nji as tij = tji. Also define the total
number of wins and ties for team i as wi =

∑
j wij and ti =

∑
j tij respectively. Denote

the total number of ties between all teams as T =
∑∑

i<j tij .

The likelihood function for the parameters αi and ν are the products of the probabil-
ities of all outcomes of the matches. This is very similar to the likelihood of the original
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CHAPTER 3. BRADLEY-TERRY MODEL WITH TIES

Bradley-Terry model given in (2.2). The likelihood function for the Davidson model is:

L(α1, . . . , αk, ν) =
∏∏
i<j

(
αi

αi + αj + ν
√
αiαj

)wij

×
(

αj
αi + αj + ν

√
αiαj

)wji

×
(

ν
√
αiαj

αi + αj + ν
√
αiαj

)tij

=

νT
k∏
i=1

α
wi+

1
2
ti

i∏∏
i<j

(αi + αj + ν
√
αiαj)nij

.

(3.2)

Taking logs, we arrive at the following log-likelihood function:

l(α1, . . . , αk, ν) = T log ν +
k∑
i=1

(wi + 1
2 ti) logαi

−
∑∑
i<j

nij log(αi + αj + ν
√
αiαj),

(3.3)

and further, if we take derivatives with respect to the αis and ν, we get the following
equations:

∂l

∂αi
=

1
2
· 2wi + ti

αi
−

k∑
j=1
j 6=i

1
2
·
nij(2 + ν

√
αj/αi)

(αi + αj + ν
√
αiαj)

∂l

∂ν
=
T

ν
−
∑∑
i<j

nij
√
αiαj

αi + αj + ν
√
αiαj

.

(3.4)

To obtain the maximum likelihood estimates for the model, we would need to solve
the (k+1) equations given in (3.4) equated to zero, subject to the conditions that αi ≥ 0
and

∑k
i=1 αi = 1. In the simplest case where there are only two teams competing, the

solution can be obtained explicitly. For k > 2, an iterative procedure must be employed.

Davidson (1970) in his derivation of the model discussed the uniqueness of the pa-
rameter values which maximise the likelihood function, subject to a certain condition on
the partitioning of the subsets of items being compared. An iterative procedure to solve
(3.4) was also given.
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3.2 The Davidson model as a generalized linear model

The extension of the Bradley-Terry model by Davidson maintains a linear form when
expressed in terms of logs. We can think of the outcomes of each match between i and j
as having a multinomial distribution (trinomial in fact) with probabilities corresponding
to win, losses and ties for team i. Multiplying these probabilities with the number of
times i and j compete with each other will give the expected value of wins, losses and
ties under the multinomial distribution. Further, taking logs gives us the GLM

log(nijpij|i) = λi + aij

log(nijpij|j) = λj + aij

log(nijpij|0) = λ+ 1
2(λi + λj) + aij ,

(3.5)

where we have defined λi = logαi (the log abilities, as before), λ = log ν and all the aijs
are normalising constants. This gives the following GLM components:

1. The Random component:

These are independent multinomial observations of the results of each match be-
tween i and j, Yij = [Yij|i Yij|j Yij|0] ∼ Mult3

(
nij , pij = [pij|i pij|j pij|0]T

)
, where

the components of these observations are the number of wins, loses and ties when
i meets j. The mean vector is µij = E[Yij ] = nijpij = [nijpij|i nijpij|j nijpij|0]T.

2. The Systematic component:

The systematic component consists of the three RHS equations of (3.5) for all
n(n − 1)/2 pairwise competitions between i and j. We must create the design
matrix appropriately. To do this, let the design matrix X be an augmentation
between two design matrices Λ and A, so that X = [Λ|A].

The design matrix Λ corresponds to the parameters λi and λ. The matrix is of
dimensions 3

(
k
2

)
× (k + 1). Let us index the columns of the matrix by the triple

(i, j| l), which indicates the match between i and j with the outcome l ∈ {i, j, 0}.
These indices will be in increasing order of i and j, and in the match outcome order
of win, loss and tie, i.e. (1, 2|1), (1, 2|2), (1, 2|0), (1, 3|1) . . . . The rth column entry
of the (i, j| l)th row of Λ depends on the cases below:

Λ(i,j|i),r =

{
1 if r = i

0 otherwise

Λ(i,j|j),r =

{
1 if r = j

0 otherwise

Λ(i,j|0),r =


1
2 if r = i or r = j

1 if r = k + 1
0 otherwise .

(3.6)
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The design matrix A will be a 3
(
k
2

)
×
(
k
2

)
matrix. We index the columns of A by

the double (i, j) in increasing order of i and j, i.e. (1,2), (1,3), etc. Using this
notation, the entries of A in position

(
(i, j|l), (i, j)

)
are 1 and 0 everywhere else.

We collect all the parameters into a vector λ, in the order of the λis, λ, followed
by the aijs. The length of this vector is k + 1 + k(k − 1)/2.

The systematic component can then be written as:

Xλ = [Λ|A]λ =



index 1 2 3 k−1 k k+1 (1,2) (1,k) (2,3) (k−1,k)

(1,2|1) 1 0 0 · · · 0 0 0 1 · · · 0 0 · · · 0
(1,2|2) 0 1 0 · · · 0 0 0 1 · · · 0 0 · · · 0
(1,2|0)

1
2

1
2 0 · · · 0 0 1 1 · · · 0 0 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

...
. . .

...
(1,k|0)

1
2 0 0 · · · 0 1

2 1 0 · · · 1 0 · · · 0
(2,3|2) 0 1 0 · · · 0 0 0 0 · · · 0 1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

...
. . .

...
(k−1,k|k) 0 0 0 · · · 0 1 0 0 · · · 0 0 · · · 1
(k−1,k|0) 0 0 0 · · · 1

2
1
2 1 0 · · · 0 0 · · · 1





λ1

λ2
...
λk
λ
a12

a13
...

ak−1k


3. The Link function:

The link function is log. Hence, equivalent expression of equation (3.5) is:

log
[
µij

]k
i,j=1
i<j

= Xλ.

One problem we encounter in fitting this model is that the glm function in R can-
not handle multinomial data directly. To overcome this, we use the ‘Poisson trick’ as
described by Bishop, Fienberg, & Holland (2007). The observations can be modelled
instead as a vector of independent Poisson random variables, provided that the appro-
priate constraints are introduced into the model. For a detailed explanation of this
method, please refer to Appendix A. We will now move on to a practical illustration of
the Davidson model.

3.3 The English Premier League season 2008/09

The EPL is England’s primary professional football competition. Each season runs from
August to May, with 20 teams playing each other twice - once on home ground and once
away, which means that each team plays 38 games a season, and a total of 380 games are
played altogether. The teams are ranked on the basis of points collected throughout the
season (3 for a win, 1 for a tie and 0 for a loss). The last three ranked teams are relegated
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to the lower Football League Championship. A total of 43 teams have competed in the
EPL since its formation in 1992, but only four have won the title: Arsenal, Blackburn
Rovers, Chelsea and Manchester United.

In the 2008/09 season of the EPL, Manchester United became champions for the
eleventh time on the penultimate weekend of the season, overtaking Liverpool for top
spot who were their main competition for the title that season. These two teams are
of the so called “Big Four”, of whom the other two are Arsenal and Chelsea. The “Big
Four” have dominated the top four spot since the 1995-1996 season of the EPL. The
significance of finishing in the top four is that the teams would then qualify to compete
in the prestigious European league. There will be two parts to this analysis: firstly,
we shall look at how the Davidson rankings compare to that of the league table, and
secondly, we shall look at how the model serves as a prediction for the final standings.

To start off, we would need to enter the appropriate data and code into R. As discussed
above in the previous section, we set the results of the matches played out by the teams
for the whole season to fit a GLM. The model matrix in this case would be a 20 × 20
model matrix as described in the previous section. Please refer to Appendix B for the
code to fit this model in R.

The table on the left of Table 3.1 shows the estimated abilities α̂i for the Davidson
model sorted in descending order. This gives the estimated rank of the teams. Alongside
the estimated values are the standard errors for each parameter estimated. The estimated
value of ν is 0.851. The residual deviance as calculated by glm is 413.29 on 360 degrees
of freedom. Also presented in Table 3.1 is the final league standing of the EPL for
comparison against the Davidson rankings.

Our expectation is that the Bradley-Terry model should be able to “learn” the final
standing of the table from the season’s results. Therefore, we would not anticipate much
discrepancy between the ranking produced by the model and the final table. This is
what we see from the two tables above. If we look at the line connecting the two tables
above, most of them connect the correct team from the left table (Davidson rankings)
to the right table (league table). The exception is Portsmouth, Blackburn and Bolton.
The reason behind this discrepancy is simple - Bolton had lost more games but won
more games yet managed to get the same number of points than their close opponents
Portsmouth and Blackburn. This type of discrepancy suggests that the model clearly
values wins more than losses. On the other hand, if we look at the Davidson rankings
for the three teams, they are not that different (0.0141, 0.0141 and 0.0130) anyway. So
there is little cause for concern regarding this misplaced ranking in the Davidson model.

One thing that might be interesting to study is how well the model predicts the
final standings at certain time periods during the season. We will look at 4 subintervals
starting from the beginning of the 2008-2009 season - T10 (games 1-10), T20 (games 1-
20), T30 (games 1-30) and TF (games 1-38, i.e. the whole season). The most interesting
time interval to look at presumably would be T20, because by then, half of the games
have been played and each team has already played each other once. The model by this

16



CHAPTER 3. BRADLEY-TERRY MODEL WITH TIES

Table 3.1: Table of Davidson rankings and their corresponding standard errors (left) and
the final league table (right).

time period should be able to give us a good idea of the strength of each team.

Figure 3.1 below is a diagram which can aid in determining the estimated rankings
of the teams at different time periods. The diagram is divided into 4 parts representing
each of the time periods we are considering. At each time period, the teams are ranked
according to their Davidson abilities as estimated by the model, and their position plot-
ted. The exception is the last column, which represents the actual standings from the
league table. These plotted points are connected by a line so the reader can trace the
change in rankings over time. Note however that this is merely a diagram and not a
mathematical plot, so the choice of curved lines over those of straight lines connecting
the points are purely for aesthetic reasons. At time T10, the Davidson rankings look way
off from the final standings of the season. There are a few exceptions of course, but in
general, after having played 10 games, the abilities predicted by the model is not a good
predictor of the final outcome.

Half-way through the season, the rankings become a bit more familiar to the final
standings. However, there are still teams which are not reflected correctly by the model.
Take Newcastle for instance - the T20 model ranks Newcastle at 11th place, but at the
end of the season, Newcastle finished 18th, and was relegated to the lower division. With
8 games remaining, the model T30 is quite similar to the final standings of the EPL.
This indicates that the predicted ranking of the teams get more and more reliable only
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Figure 3.1: Diagram showing the estimated rankings by the Davidson model at different
time periods during the 2008/09 season. The “wavier” the line connecting the points
from left to right, the more unreliable the estimated rankings are in predicting the final
standings.
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as most recent match results become available. This is not a good quality of a prediction
model.

We would like some method to quantify the inability of the Davidson model to predict
the final standings. Two methods relating to the errors in the Davidson rankings will be
suggested here . The first one is a simple measure of how many of the teams are ranked
incorrectly compared to the final league table. Call this the ‘rank error rate’, er, which
we define by the total number of wrongly estimated rankings divided by the total number
of rankings. In a more mathematical sense, for k teams, define

er =
1
k

k∑
i=1

I[team i ranked
correctly

].
Another way to capture the inadequacy to which the Davidson model predicts the final

standing of the league is by measuring how much different is the predicted rankings from
the actual rankings. Denote this type of error measurements as the ‘average misplaced
rank’, em, which we define to be the average of the absolute difference between the teams’
rankings. If ri (r̂i) is the (estimated) rank of team i, then we write

em =
1
k

k∑
i=1

|r̂i − ri|

for i = 1, . . . , k. So em really gives the indication of by how much on average is the team
wrongly ranked by the model. The two error measurement described can be used as a
simple indication of how good or bad the Davidson model estimates the final standings.
The table below gives the two error measurements described for time periods T10, T20,
T30 and TF. For instance, for time period T20, 85% of the estimated rankings were
wrongly placed, and the average number of places each team is misplaced by is 3.

Time period er em
T10 95% 4.70
T20 85% 3.00
T30 60% 1.15
TF 15% 0.20

Table 3.2: Error measurements for the estimated rankings during the different time
periods of the season.

Essentially what we see here is that the Bradley-Terry model does not predict the
final abilities of the teams very well. This can be seen by the decreasing pattern of the
error measurements in Table 3.2. The model only has information available during that
time to infer what the abilities of the teams are, so the abilities at each time periods
are an indication of the teams’ abilities during that time period only, and not over the
whole season. Jumping back to the conclusion of the previous analysis, we can see that
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the error measurements does indicate that the league table concurs with the estimated
rankings of the model.

Perhaps some other methods could be used to incorporate prediction using the
Bradley-Terry model, such as using past data from previous seasons as prior informa-
tion. One challenge that could possibly arise from this is that because some teams are
continuously being promoted and relegated into the EPL, the past data might not be
relevant at all. This is particularly true if the team has not played in the EPL for a long
period of time.
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4. Home advantage analysis

The home advantage effect is a well known phenomenon that occurs in competitive sports
such as football. The reasons for the existence of home advantage effect have been studied
by many, especially from a psychological point of view. In association football, the home
team will allocate significantly more tickets for the home supporters, which often creates
an environment which motivates the home team to do well. The crowd of cheering fans
are often referred to as the “twelfth man” of the home team. It is also claimed that the
home crowd could influence the referee’s decision to be biased towards the home team,
although this would mostly be the case for inexperienced referees.

Other causes of home advantage effects could be familiarity with the ground in which
the teams play. This could especially be true of the teams which are newly promoted or
relegated into another division.

The fact that the away teams need to travel to arrive at the opposition’s stadium could
also be a factor. In the UEFA1 Champions League for instance, the teams competing
are scattered across Europe, and hence travel by air is often necessary; sometimes even
entering different time zones.

In any case, the existence of this home advantage factor is hard to deny. Most
association football competitions acknowledge the difficulty of playing away games, as
exemplified by UEFA competitions. Teams playing in knockout format play a home and
away leg, whereby away goals are worth more than home goals in the event of a tie
between the teams. Scientific methods should be focused towards proving that teams do
do well at home compared to away, possibly enumerating this factor if possible.

In the statistical literature, an interesting study was conducted by Clarke & Norman
(1995) regarding the home advantage effect for English football teams. The method used
was a least squares method, and they tried to explain the home advantage factor through
several covariates such as geographical distance between the teams and time in division.
We, on the other hand, will be looking to quantify the home advantage effect seen, rather
than try to provide explanations for the effects.

1The Union of European Football Association.
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4.1 The two models

The Bradley-Terry model can be used to measure the home advantage effect in pairwise
contests. We have seen one such model by Agresti (2002) as given by (2.10), but in order
to model football data, we would need to take ties into account. To do this, we will
merge the Davidson (1970) model with the Agresti (2002) model. There are two models
which can arise, and these are explained below.

For one, we can model the “common” home advantage effect that is explained by the
data. This would mean including an extra parameter in the Davidson model which would
explain the advantage of playing at home.

For another, instead of assuming the same home advantage effect for all teams, we
could vary the home advantage for all teams competing. This would imply that different
home grounds exert different scales of home advantage effects. Evidently, k extra param-
eters are introduced in the Davidson model, which would effectively account for each of
the teams’ home advantage factor.

We will discuss the two models in the coming sections below.

4.2 Common home advantage model

Let k be the number of teams competing, and as before, αi represent the teams’ abilities.
The model is

P[i beats j at home] =
ραi

ραi + αj + ν
√
ραiαj

P[j beats i away] =
αj

ραi + αj + ν
√
ραiαj

P[i ties with j at home] =
ν
√
ραiαj

ραi + αj + ν
√
ραiαj

,

(4.1)

for all i, j ∈ {1, . . . , k}. The home advantage parameter is ρ.

4.2.1 Maximum likelihood estimation

In the home advantage model, the distinction between home and away games is made.
To aid notation, we shall denote the first team in the subscript notation as the home
team, and the second team as the away team. As an example, nij would denote the
number of times team i plays j at i’s home, which is not the same as nji.

We shall use the same notation as before, where wij and tij represent the number of
wins and ties for team i at home against team j. Also define wi, ti and t′i as the total
number of home wins, home ties and away ties for team i. In addition, let W , T and T ′

be the total number of home wins, home ties and away ties respectively.
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The likelihood function for this model follows closely to that of the Davidson model.
Assuming independence of the pairwise contests, we have

L(α1, . . . , αk, ρ, ν) =
k∏
i=1

k∏
j=1

i 6=j

(
ραi

ραi + αj + ν
√
ραiαj

)wij

×
(

αj
ραi + αj + ν

√
ραiαj

)wji

×
(

ν
√
ραiαj

ραi + αj + ν
√
ραiαj

)tij

=

νTρW+ 1
2
T

k∏
i=1

α
wi+

1
2
ti

i

k∏
i=1

k∏
j=1

i 6=j

α
wji+

1
2
tij

j

k∏
i=1

k∏
j=1

i 6=j

(
ραi + αj + ν

√
ραiαj

)nij

.

(4.2)

Taking logs of the above, we arrive at the log-likelihood function

l(α1, . . . , αk, ρ, ν) = T log ν + (W +
1
2
T ) log ρ+

k∑
i=1

(wi +
1
2
ti) logαi

+
k∑
i=1

k∑
j=1

i 6=j

(wji +
1
2
tij) logαj

−
k∑
i=1

k∑
j=1

i 6=j

nij log(ραi + αj + ν
√
ραiαj).

(4.3)

The rather complicated equations above have the following log-likelihood derivatives:

∂l

∂αi
=

1
2
·4wi + ti + t′i

αi
−

k∑
j=1
j 6=i

1
2

(
nij(2ρ+ ν

√
ραj/αi)

ραi + αj + ν
√
ραiαj

+
nji(2 + ν

√
ραj/αi)

ραj + αi + ν
√
ραiαj

)

∂l

∂ρ
=

1
2
·2W + T

ρ
−

k∑
i=1

k∑
j=1

i 6=j

1
2

(
nij(2αi + ν

√
αiαj/ρ)

ραi + αj + ν
√
ραiαj

)

∂l

∂ν
=
T

ν
−

k∑
i=1

k∑
j=1

i 6=j

nij
√
ραiαj

ραi + αj + ν
√
ραiαj

.

(4.4)
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One good thing about this model is that it is still linear on the log scale, which we
can express as a GLM and solve for the maximum likelihood estimates using statistical
packages.

4.2.2 Common home advantage model as a GLM

In keeping with the home and away theme, let us define the probability of team i winning,
losing and tying with j at home as pij|i, pij|j and pij|0, so that this is not the same
probability as pji|l. As we have seen before, we multiply the model (4.1) with nij and
then take logs. This gives us the GLM:

log(nijpij|i) = λi + ψ + aij

log(nijpij|j) = λj + aij

log(nijpij|0) = λ+ 1
2(λi + λj) + aij ,

(4.5)

for all i, j ∈ {1, . . . , k} where we have defined λi = logαi, λ = log ν and additionally
ψ = log ρ. The aijs are normalising constants and unlike before, aij 6= aji. This gives
the following GLM components:

1. The Random component:

These are independent multinomial observations of the results of each match be-
tween i and j when team i is at home, Yij = [Yij|i Yij|j Yij|0] ∼ Mult3

(
nij , pij =

[pij|i pij|j pij|0]T
)
, where the components of these observations are the number of

wins, loses and ties when i meets j at home. The mean vector is µij = E[Yij ] =
nijpij = [nijpij|i nijpij|j nijpij|0]T.

2. The Systematic component:

The systematic component consists of the three RHS equations of (4.5) for all
k(k − 1) pairwise contests between i and j at i’s home. Let the design matrix X
be an augmentation between two design matrices Λ and A, so that X = [Λ|A].

The design matrix Λ corresponds to the parameters λi, λ and ψ. The matrix is
of dimensions 3k(k − 1) × (k + 2). We shall deploy the triple index (i, j| l) (in
increasing order) for the rows of the matrix. The rth column entry of the (i, j| l)th
row of Λ depends on the following cases:

Λ(i,j|i),r =

{
1 if r = i or k + 1
0 otherwise

Λ(i,j|j),r =

{
1 if r = j

0 otherwise

Λ(i,j|0),r =


1
2 if r = i, j or k + 1
1 if r = k + 2
0 otherwise .

(4.6)
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The design matrix A will be a 3k(k− 1)× k(k− 1) matrix. We index the columns
of A by the double (i, j) (in increasing order) for the rows. Using this notation,
the entries of A in position

(
(i, j|l), (i, j)

)
are 1 and 0 everywhere else.

Collect all the parameters into a vector λ, in the order of the λis, ψ, λ, followed
by the aijs. The length of this vector is k + 2 + k(k − 1).
The systematic component can then be written as

Xλ = [Λ|A]λ =



index 1 2 3 k k+1 k+2 (1,2) (1,k) (2,1) (k,k−1)

(1,2|1) 1 0 0 · · · 0 1 0 1 · · · 0 0 · · · 0
(1,2|2) 0 1 0 · · · 0 0 0 1 · · · 0 0 · · · 0
(1,2|0)

1
2

1
2 0 · · · 0 1

2 1 1 · · · 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

. . .
...

(1,k|0)
1
2 0 0 · · · 1

2
1
2 1 0 · · · 1 0 · · · 0

(2,1|2) 0 1 0 · · · 0 1 0 0 · · · 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
...

. . .
...

(k,k−1|k−1) 0 0 0 · · · 0 0 0 0 · · · 0 0 · · · 1
(k,k−1|0) 0 0 0 · · · 1

2
1
2 1 0 · · · 0 0 · · · 1





λ1

λ2
...
λk
λ
a12

a13
...

akk−1


3. The Link function:

The link function is log. Equation (4.5) can be equivalently expressed as:

log
[
µij

]k
i,j=1
i<j

= Xλ.

We have seen how we can use the Poisson trick to model the multinomial data as
Poisson variables. The same principles apply here and we can express the model as a
Poisson log-link GLM. As the idea is very similar to that of the Davidson model, the
explanation will not be repeated.

4.3 Individual home advantage model

Let k be the number of teams competing, and as before, αi represent the teams’ abilities.
The model is

P[i beats j at home] =
ρiαi

ρiαi + αj + ν
√
ρiαiαj

P[j beats i away] =
αj

ρiαi + αj + ν
√
ρiαiαj

P[i ties with j at home] =
ν
√
ρiαiαj

ρiαi + αj + ν
√
ρiαiαj

(4.7)

for all i, j ∈ {1, . . . , k}. The home advantage parameter for team i is ρi.
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4.3.1 Maximum likelihood estimation

The likelihood function for the individual home advantage model will be very similar to
that of the common home advantage model, so we will go through the derivation very
briefly. Let wij , tij , wi, ti, t′i, W , T and T ′ be exactly as in Section 4.2.1. Then

L(α1, . . . , αk, ρ1, . . . , ρk, ν) =
k∏
i=1

k∏
j=1

i 6=j

(
ρiαi

ραi + αj + ν
√
ρiαiαj

)wij

×
(

αj
ρiαi + αj + ν

√
ρiαiαj

)wji

×
(

ν
√
ρiαiαj

ρiαi + αj + ν
√
ρiαiαj

)tij

=

νT
k∏
i=1

(ρiαi)wi+
1
2
ti

k∏
i=1

k∏
j=1

i 6=j

α
wji+

1
2
tij

j

k∏
i=1

k∏
j=1

i 6=j

(
ρiαi + αj + ν

√
ρiαiαj

)nij

.

(4.8)

The log-likelihood function is

l(α1, . . . , αk, ρ1, . . . , ρk, ν) = T log ν +
k∑
i=1

(wi +
1
2
ti) log ρi

+
k∑
i=1

(wi +
1
2
ti) logαi +

k∑
i=1

k∑
j=1

i 6=j

(wji +
1
2
tij) logαj

−
k∑
i=1

k∑
j=1

i 6=j

nij log(ρiαi + αj + ν
√
ρiαiαj),

(4.9)
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which has the derivatives

∂l

∂αi
=

1
2
·4wi + ti + t′i

αi
−

k∑
j=1
j 6=i

1
2

(
nij(2ρi + ν

√
ρiαj/αi)

ρiαi + αj + ν
√
ρiαiαj

+
nji(2 + ν

√
ρiαj/αi)

ρiαj + αi + ν
√
ρiαiαj

)

∂l

∂ρi
=

1
2
·2wi + ti

ρi
−

k∑
j=1
j 6=i

1
2

(
nij(2αi + ν

√
αiαj/ρi)

ρiαi + αj + ν
√
ρiαiαj

)

∂l

∂ν
=
T

ν
−

k∑
i=1

k∑
j=1

i 6=j

nij
√
ρiαiαj

ρiαi + αj + ν
√
ρiαiαj

.

(4.10)

As with the common home advantage model, this model is still linear on the log scale,
which we means can express the model as a GLM and solve for the maximum likelihood
estimates using statistical packages.

4.3.2 Individual home advantage model as a GLM

Define pij|i, pij|j and pij|0 as in Section 4.2.2. Applying the same procedure as we did in
that section, we will get the GLM

log(nijpij|i) = λi + ψi + aij

log(nijpij|j) = λj + aij

log(nijpij|0) = λ+ 1
2(λi + λj) + aij ,

(4.11)

for i, j ∈ {1, . . . , k} where we have defined λi = logαi, λ = log ν and additionally
ψi = log ρi. The GLM components are exactly as before, except that the model matrix
is slightly different. We will only discuss the model matrix here.

Again, it is easier if we let the design matrix X be an augmentation between two
design matrices Λ and A, so that X = [Λ|A].

The design matrix Λ corresponds to the parameters λi, λ and ψi. The matrix is of
dimensions 3k(k − 1)× (2k + 1). Again with the triple index (i, j| l) for the rows of the
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matrix, the rth column entry of the (i, j| l)th row of Λ depends on the following cases:

Λ(i,j|i),r =

{
1 if r = i or k + i

0 otherwise

Λ(i,j|j),r =

{
1 if r = j

0 otherwise

Λ(i,j|0),r =


1
2 if r = i, j or k + i

1 if r = 2k + 1
0 otherwise .

(4.12)

The design matrix Λ can then be written as

Λ =



index 1 2 3 k−1 k k+1 k+2 2k−1 2k 2k+1

(1,2|1) 1 0 0 · · · 0 0 1 0 · · · 0 0 0
(1,2|2) 0 1 0 · · · 0 0 0 1 · · · 0 0 0
(1,2|0)

1
2

1
2 0 · · · 0 0 1

2 0 · · · 0 0 1
...

...
...

. . .
...

...
...

...
. . .

...
...

...
(1,k|0)

1
2 0 0 · · · 0 1

2 1 0 · · · 0 1
2 1

(2,1|2) 0 1 0 · · · 0 0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
(k,k−1|k−1) 0 0 0 · · · 1 0 0 0 · · · 0 0 0
(k,k−1|0) 0 0 0 · · · 1

2
1
2 0 0 · · · 0 1

2 1


The only difference between this matrix and the one in the previous section is the

addition of the k − 1 extra columns before the last one, to account for all the individual
home advantage effects.

The design matrix A on the other hand will be exactly the same as in the previous
section. Collect all the parameters into a vector λ, in the order of the λis, ψis, λ, followed
by the aijs. The length of this vector is 2k+ 1 + k(k− 1). Applying the Poisson trick as
before, we are set to estimate the parameters.

4.4 Home Advantage in the English Premier League

To study the home advantage effect using the home advantage models, we will look at
eight seasons of the English Premier League from 2001/02 until 2008/09. As mentioned
previously, there are instances where some teams do not always feature in the EPL in
the 8 seasons we are analysing. In the extreme case, there are teams which only featured
in just one out of the eight seasons.
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Teams Season avg.0102 0203 0304 0405 0506 0607 0708 0809
Stoke - - - - - - - 18.465 18.465
Fulham 2.576 7.325 1.991 2.031 42.599 3.539 0.584 4.649 8.162
Chelsea 1.701 2.788 0.352 0.479 53.506 0.899 0.745 0.308 7.597
Wolves - - 7.403 - - - - - 7.403
Norwich - - - 5.862 - - - - 5.862

Sheffield Utd. - - - - - 4.845 - - 4.845
Portsmouth - - 14.018 4.087 1.437 6.194 0.769 1.885 4.732
West Ham 22.921 0.615 - - 0.694 1.626 1.417 0.837 4.685
Newcastle 1.490 11.066 8.763 2.014 4.894 2.825 3.502 1.964 4.565
Man. City - 0.855 2.514 1.124 3.106 0.499 5.507 17.941 4.507
Mid’boro 1.418 13.782 1.105 1.721 1.076 4.119 1.416 9.430 4.259
Liverpool 1.117 1.206 1.240 9.809 3.471 13.764 1.577 0.775 4.120
Sunderland 6.235 0.620 - - 0.463 - 10.746 0.808 3.774

Soton 1.418 4.616 2.729 5.862 - - - - 3.656
Man. Utd. 0.205 5.330 0.743 1.662 0.870 0.972 14.102 4.954 3.605
Tottenham 5.887 1.794 3.247 2.041 3.510 3.479 1.758 7.058 3.597
B’ham - 1.504 1.420 3.052 2.335 - 8.683 - 3.399
Reading - - - - - 2.228 4.112 - 3.170
Arsenal 0.149 2.988 0.000 1.468 8.759 4.250 3.740 0.844 2.775
Everton 2.590 3.801 6.439 2.721 0.860 2.312 1.583 0.322 2.578
Wigan - - - - 0.282 0.414 5.882 2.887 2.366

Aston Villa 2.632 7.768 2.380 2.473 0.900 1.036 0.634 0.605 2.303
Crystal Pal. - - - 2.246 - - - - 2.246

Bolton 0.957 2.713 0.519 0.947 4.894 1.254 3.819 2.361 2.183
West Brom. - 0.726 - 2.141 1.337 - - 4.474 2.170
Derby County 2.025 - - - - - 2.076 - 2.050
Blackburn 3.874 1.197 0.237 0.738 6.298 1.035 0.781 1.885 2.006
Watford - - - - - 1.921 - - 1.921
Charlton 0.374 0.719 0.528 1.342 1.287 5.359 - - 1.601
Ipswich 1.459 - - - - - - - 1.459
Leeds 0.610 0.508 1.962 - - - - - 1.027

Leicester 0.991 - 0.689 - - - - - 0.840
Hull - - - - - - - 0.148 0.148
avg. 3.031 3.596 2.914 2.691 7.129 3.129 3.672 4.130 -
ρ̂ 1.598 2.093 1.383 2.120 2.103 2.118 2.186 1.845 -

Table 4.1: Common and individual home advantage effects from eight past seasons of
the EPL
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Table 4.1 shows the estimated values of the parameters ρ and ρi which correspond to
the home advantage effects. The values of ρ as estimated by the model for each season
is given in the last row of Table 4.1. We can calculate the mean for each of the ρis which
would give the average of the home advantage effect for that particular team over the
8 seasons. This is given in the last column. The teams have been sorted in descending
order according to this column. We can also calculate the mean of all the individual
home advantage effects for a particular season, which is given in the second last row of
the table.

The data of the results of all matches for the teams competing in the eight seasons
was fitted using glm in R according to the model discussed in the previous sections. The
deviances as obtained by glm are given in Table 4.2.

Season Common HA Individual HA
χ2

19 val. p-val.(739 d.f.) (720 d.f.)
2001/02 729.93 701.83 28.10 0.0816
2002/03 715.74 691.61 24.12 0.191
2003/04 527.29 492.18 35.11 0.0135
2004/05 712.81 702.72 10.08 0.951
2005/06 671.58 639.37 32.20 0.0297
2006/07 718.60 701.38 17.21 0.575
2007/08 665.53 648.40 17.13 0.581
2008/09 699.32 663.69 35.63 0.0117

Table 4.2: Residual deviances for the fits

A hypothesis test was conducted to determine which of the two home advantage
models suited the data well. The test statistic is given by twice minus the difference
between the log likelihood values of the two models. Since glm reports the deviances
directly, we just use these values. The p-values are given in the table above. Low p-
values are evidence that the individual home advantage model is a better fit than the
common home advantage model. There are some mixed results here: according to Table
4.2, in seasons 2001/02, 2004/05, 2006/07 and 2007/08, the individual home advantage
model is a better fit. For the other seasons, the common home advantage model is better.

There are a couple of outstanding values in the table above, and we shall try to give
some insight to the meaning of these values. In the 2005/06 season, Chelsea retained
their title as the EPL winners. They achieved this feat without having lost at home the
entire season. This pretty much says a lot about their home advantage. On the other
hand, Fulham finished 12th in the middle of the table, but their home advantage effect
was very high compared to the rest. Interestingly, a sort of opposite cause is behind
this high value. Fulham only won once away our of the 14 times they won that season.
They also lost 10 more games away than at home. So two apparent causes for high home
advantage effects have been learned.
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In the 2003/04 season, the model estimates that Arsenal had no home advantage
effect whatsoever (ρi = 0 exactly). What actually happened that season is that Arsenal
went through the entire season unbeaten at home and away, which resulted in their 3rd
EPL title. The model did not have any records of Arsenal losing which is a possible
explanation for their apparent zero home advantage effect; even though they had won 4
more games at home than away. Perhaps their home advantage effect was cancelled out
by the fact that they also drew 4 more games away than at home.

Let us look at the trends of these home advantage effects, looking specifically whether
they are constant over time. Presumably if they are found to be constant, then this really
solidifies the theory behind the home advantage effect. To do this, let’s concentrate on the
14 teams which played in the EPL for all eight seasons. The teams are Arsenal, Aston
Villa, Everton, Blackburn, Bolton, Chelsea, Fulham, Tottenham, Manchester United,
Liverpool, Middlesborough and Newcastle. The values of the individual home advantage
effects are plotted in Figure 4.1.

Figure 4.1: Home advantage trends for the 14 teams who played in all eight seasons
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From what can be observed, the home advantage effects are not at all constant for the
teams during the eight seasons. The large seasonal variation is evidently very apparent,
whereby in some seasons teams had a very large home advantage, but in other seasons
the opposite happened: the teams showed a lower home advantage or even a home
disadvantage. Obviously these home advantage effects are a direct reflection of the results
of the matches for the teams. To understand why these home advantage effects vary from
season to season, one would have to examine the match results.

One question we could ask is whether or not these seasonal variations are real vari-
ations and not due random variation. We could address this question by performing
a hypothesis test on the home advantage parameters for each team and each season
j ∈ {1, . . . , 8}, ρ(j)

i . Refer to the seasons 2001/02, . . . , 2008/09 respectively as 1, . . . , 8.

Firstly, we estimate the ‘8-season home advantage’ parameters by aggregating all 8
seasons worth of results from the EPL from 2001/02 until 2008/09, and apply the home
advantage model. Denote these home advantage parameters as ρ′i. In a sense, these ρ′i
represent the “average” of the home advantage parameter across all 8 seasons. Note that
due to the fact that some teams do not appear in the EPL in some seasons, there won’t
be a symmetry of number of matches anymore, but this shouldn’t be a problem when we
are estimating the model; it just means we need to put in some extra effort in setting up
the GLM.

Using the 8-season home advantage parameters as a reference point, we set up the
hypothesis test:

H0 : ρ(1)
i = · · · = ρ

(8)
i = ρ′i

H1 : otherwise

for teams i = 1, . . . , 33. This might be difficult to work out at once, but by assuming
independence of the seasons, we could possibly split the hypothesis tests into 8 indepen-
dent tests for each team. We would then make use of minus two times the difference
between likelihood values from the two models to set up a χ2-test of significance with the
appropriate degrees of freedom. Unfortunately, due to a lack of time, this test could not
be performed. Given more time, we could then have some extra confidence to whether
or not the seasonal variations in the home advantage effects are real.
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5. Estimating players’ abilities

In Section 2.4.3, we saw how Huang et al. (2006) developed a model to estimate the
individual players’ abilities in group comparisons. This is very much applicable for team
sports like football. The model basically specifies that the ability of the team as a whole
is the sum of the ability of the individuals who make up that team.

Each squad in the English Premier League has an average of 25 players registered in
their squad, and if we were to analyse this, then this would mean having 25× 20 = 500
parameters for the players alone in the model. This could turn out to be very complicated.

To simplify matters a bit, instead of modelling all players in the league, we will
turn our focus to ranking the abilities of players in one specific team from the EPL,
Liverpool F.C.. In the 2008/2009 season, Liverpool finished second behind Manchester
United, their bitter rivals. Having started the season so well, Liverpool dropped many
points during the middle of the season, causing them to finish the season just four points
behind the league leaders.

Liverpool have been labelled as being a two-man team, because of their reliance on
their two star players, captain Steven Gerrard (Midfield) and wonder kid Fernando Torres
(Striker). Liverpool is certainly recognised by the attacking prowess of the Gerrard-Torres
partnership. It would be interesting to see how their estimated abilities from the model
compare with this claim - will the model emphasise the abilities of Gerrard and Torres?

5.1 Team composition model

Let us introduce the model which we shall be using. The basic idea is that we replace
Liverpool’s team ability parameter by a sum of the players’ parameters which played in
that particular match. This would imply that Liverpool’s ability changes from match to
match, depending on which players are fielded for each match.

We introduce a few notations alongside the ones already mentioned in the previous
section. Denote the ability parameters of the players as φi, for each of the m players. In
our notation, team 1 will always denote Liverpool, i.e. α1 is the ability parameter for
Liverpool. To indicate that Liverpool’s ability changes with each match, we introduce
subscripts in Liverpool’s ability parameter, so it becomes α1jh. This denotes Liverpool’s
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Name Position No. of
appearances

Pepe Reina Goalkeeper 38
Daniel Agger Defender Centre 17
Jamie Carragher Defender Centre 38
Sami Hyypia Defender Centre 15
Martin Skrtel Defender Centre 21
Alvaro Arbeloa Defender Right 29
Fabio Aurelio Defender Left 24
Andrea Dossena Defender Left 16
Emiliano Insua Defender Left 10
Xabi Alonso Midfield Centre 33
Steven Gerrard Midfield Centre 31
Lucas Leiva Midfield Centre 25
Javier Mascherano Midfield Centre 27
Damien Plessis Midfield Centre 1
Nabil El-Zhar Midfield Right 14
Jermaine Pennant Midfield Right 3
Ryan Babel Midfield Left 27
Yossi Benayoun Midfield Left 32
Albert Riera Midfield Left 28
Robbie Keane Striker 18
Dirk Kuyt Striker 38
David N’gog Striker 13
Fernando Torres Striker 24

Table 5.1: Liverpool squad, their positions and the number of time each player appeared
in the 2008/09 season.

ability against team j in match h. Given that Liverpool is the only team we are consider-
ing, the subscript ‘1’ indicating Liverpool is redundant and can be dropped. So whenever
we mention αjh with this dual subscript, we always mean Liverpool’s ability.

We would also need indicator functions for the players to indicate whether or not they
played in a particular match. Let Iijh be the indicator to whether or not player i played
in match h against team j. Thus, the contribution from each of the players against team
j would compose the team’s ability for match h, and can be written as

φ1I1jh + φ2I2jh + · · ·+ φmImjh.

The model that we will be working on will be the Davidson extension of the Bradley-
Terry model to include ties. Focusing specifically on team 1 (Liverpool), if we replaced
the team ability parameter with that of the team composition parameter, we would get
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the following model:

P[1 beats j in match h] =

m∑
i=1

φiIijh

m∑
i=1

φiIijh + αj + ν

√√√√αj

m∑
i=1

φiIijh

P[j beats 1 in match h] =

(
αj

)
m∑
i=1

φiIijh + αj + ν

√√√√αj

m∑
i=1

φiIijh

P[1 and j in match h] =

ν

√√√√αj

m∑
i=1

φiIijh

m∑
i=1

φiIijh + αj + ν

√√√√αj

m∑
i=1

φiIijh

,

(5.1)

for all j ∈ {2, . . . k} and all related matches h. For the rest of teams excluding team
Liverpool, the model will look exactly like the Davidson model given in (3.1). We shall
refer to the model defined in (3.1) and (5.1) above as the team composition model.

We have been pretty ambiguous so far about the notation for the matches h. What
we really mean is hijl, which indicates match number k of team i against team j, l ∈
{1, . . . , nij}, so that team i plays team j a total of nij times. Again, since Liverpool is
the only team in which their ability changes from match to match, really this index h
is only applicable to Liverpool, as we would need to make the distinction between each
of Liverpool’s matches to discern which players played in each match. In contrast, recall
that in the original Bradley-Terry model and all the other models introduced, we used
the (total) number of wins, losses and ties, as statistics for the model, without needing
to make any distinction between each result. So in fact we should be using the notation
hjl to index Liverpool’s matches against against team j.

However, since we are analysing the EPL, whereby in a whole season each team plays
each other twice, there will be only two matches of team i against team j, one home
and one away game. We can simply refer to the home match as 1 and the away match
as 2. Using the notation hjl for our analysis would be an overkill, so hopefully without
inducing any ambiguity, we shall drop the subscripts.

5.2 Maximum likelihood estimation

What we can notice about the likelihood function on the parameters (φ,α, ν) = (φ1, . . . ,
φm, α2, . . . , αk, ν) is that it can be split into two ‘disjoint’ likelihood functions. The reason
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for this is that once we consider all the contributions from Liverpool’s players, what we
are left with is contributions from all teams excluding Liverpool. The former likelihood
comes from the above equations labelled (5.1), and the latter from the Davidson model
(3.1). So if L is the likelihood function for the team composition model, then we can
write

L(φ,α, ν) = L1(φ,α, ν)L2(α, ν),

where L1 would be the likelihood function concerning all of Liverpool’s matches, and L2

would be the likelihood function from the contribution of the rest of the teams excluding
Liverpool. The likelihood L2 would not be dependent on any of the φis.

We can thus build the likelihood function L by considering each of L1 and L2 sepa-
rately. Moreover, the log-likelihood function l would just be the sum of the log-likelihood
functions l1 and l2.

5.2.1 The likelihood function L1

We will be deriving the likelihood function L1 and its corresponding derivative functions.
Consider first the contribution to the likelihood from the outcome of one match h between
Liverpool and any team j ∈ {2, . . . , k}. Let us call this contribution the ‘outcome
function’ for Liverpool. According to the probabilities in (5.1), this is given by

f1(j, h) =


m∑
i=1

φiIijh

m∑
i=1

φiIijh + αj + ν

√√√√αj

m∑
i=1

φiIijh



I[team 1 wins
match h

]

×


(
αj

)
m∑
i=1

φiIijh + αj + ν

√√√√αj

m∑
i=1

φiIijh



I[team j wins
match h

]

×


ν

√√√√αj

m∑
i=1

φiIijh

m∑
i=1

φiIijh + αj + ν

√√√√αj

m∑
i=1

φiIijh



I[teams tie
match h

]
.

(5.2)

The next step would be to consider the contribution from all of the matches between
Liverpool and team j. This is done by taking products over all their matches h. In
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analysing the EPL, this would be a product of two items - the home and away match
contribution function. This would be

contribution from team j =
∏

home & away
matches h

between 1 & j

f1(j, h).

Finally, taking products over all teams j = 2, . . . , k would then capture the entire
likelihood contribution for L1. Thus, we can write:

L1(φ,α, ν) =
k∏
j=2

2∏
h=1

f1(j, h).

The data that would be needed to calculate this likelihood function would be the
match results of Liverpool against the other teams, and of course the indicator values for
whether or not a player played in that particular match.

Let us now determine the log-likelihood function. By taking logs of L1, we get
something that looks like this:

l1(φ,α, ν) =
k∑
j=2

2∑
h=1

log f1(j, h)

=
k∑
j=2

2∑
h=1

I[team 1 wins
match h

] log

(
m∑
i=1

φiIijh

)
+ I[team j wins

match h

] logαj

+ I[teams tie
match h

] {1
2

log

(
m∑
i=1

φiIijh

)
+

1
2

logαj + log ν

}

− log

(
m∑
i=1

φiIijh + logαj + ν

√√√√αj

m∑
i=1

φiIijh

)
.

(5.3)

The derivatives of this log-likelihood function can be obtained, and they are given by
the following equations:
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∂l1
∂φi

=
k∑
j=2

2∑
h=1

I[team 1 wins
match h

]Iijh · 1
αjh

+ I[teams tie
match h

]Iijh · 1
2αjh

−
Iijh
(
1 + ν

2

√
αj/αjh

)
αjh + αj + ν

√
αjhαj

∂l1
∂αi

=
2∑

h=1

I[team i wins
match h

] · 1
αi

+ I[teams tie
match h

] · 1
2αi
−

1 + ν
2

√
αih/αi

αih + αi + ν
√
αihαi

∂l1
∂ν

=
k∑
j=2

2∑
h=1

I[teams tie
match h

] · 1
ν
−

√
αjhαj

αjh + αj + ν
√
αjhαj

.

(5.4)

5.2.2 The likelihood function L2

We will now derive the likelihood function L2 and its corresponding derivatives. The
likelihood L2 comprises of all the contributions from all teams excluding Liverpool. As a
result, the likelihood function will be exactly the same as the Davidson model as applied
to teams 2 up to k.

The likelihood and log-likelihood equations for the Davidson model have been given
in Section 3.1, so the derivations will not be repeated here. We can state the derivatives
of the log-likelihood of L2 by referring to the equations labelled (3.4) on page 13. They
are:

∂l2
∂φi

= 0

∂l2
∂αi

=
1
2
· 2wi + ti

αi
−

k∑
j=2
j 6=i

1
2
·
nij(2 + ν

√
αj/αi)

(αi + αj + ν
√
αiαj)

∂l2
∂ν

=
T

ν
−
∑∑
i<j

nij
√
αiαj

αi + αj + ν
√
αiαj

,

(3.4)

where as before, the notations wi and ti represent the number of wins and ties for team
i respectively and T is the total number of ties in all the matches between all the teams
excluding Liverpool.

5.2.3 The likelihood function L and the existence of a unique maximum

As specified earlier, the log-likelihood function l is the sum of both l1 and l2 by linearity of
logs. As a result, we can just add the above derivative equations (5.4) and (3.4) together
to obtain the overall derivatives of the log-likelihood for the team composition model.
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One thing to note is that the team composition model is no longer in the realms of
generalised linear models. The log mean would be instead related to the log of a linear
sum of parameters. If we take λi, λ and aij to be as before (cf. Section 3.2), then we
can see the composition model written as a non-linear model:

log(nijpij|i) = log (φ1I1jh + · · ·+ φmImjh) + aij

log(nijpij|j) = λj + aij

log(nijpij|0) = λ+ 1
2(log (φ1I1jh + · · ·+ φmImjh) + λj) + aij .

(5.5)

Due to this fact, we shall be taking a different approach than to estimate the pa-
rameters using glm(). We will translate the the equations for the log-likelihood and the
corresponding derivatives into a function in R. Call these functions loglik.bttc() and
loglik.bttc.der() respectively. The functions written can be found in Appendices D.1
and D.2. We will then be using the function optim() to try and locate the values of the
parameters which minimise the (negative) log-likelihood function loglik.bttc().

There has been work done on algorithms to solve the minimisation of the negative
log-likelihood function of this team composition model. Recall in Section 2.4.3, that
Huang et al. (2006) referred to the general case of this team composition model as
the Generalized Bradley-Terry model. In the paper, the authors outlined an iterative
procedure to solve for the MLEs. The algorithm described converges to a stationary
point under certain mild conditions.

However, the fact that the minimisation of the negative log-likelihood of the above
team composition model may not be a convex programming problem, a stationary point
achieved by the algorithm may turn out to be a saddle point. Huang et al. (2006) laid out
two assumptions which if satisfied, the algorithm is guaranteed to converge to a global
minimum. The two conditions are when there are only one player in each team, and when
exactly one team is represented by one player. The former assumption corresponds to the
Bradley-Terry model, and the latter corresponds to a situation called “one-against-the-
rest”. Unfortunately neither of these assumptions are satisfied in our team composition
model. We then proceed with caution, bearing in mind that we would be considered
fortunate if we were to obtain any reliable results from this experimental model.

Before diving straight into the analysis of Liverpool’s players during the 2008/09
season, we will first look at two simple illustrations to demonstrate the functions written
in R for estimating the ability parameters of the team composition model. This will be
considered in the following two sections.

5.2.4 Liverpool F.C. as a single player

In this section, we will be looking at a special case of the team composition model, where
one team is thought to be represented as a single player. Consequently, this is equivalent
to the Davidson extension of the Bradley-Terry model. The main purpose of this exa,ple
is to show that the written function and optim() algorithm work as intended.
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In this example, we will be looking at the 2008/09 season of the EPL, which has been
discussed in Section 3.3. We set up the data frame for the likelihood calculations: this
means defining Liverpool as comprising of a single player, defining the rest of the 19 teams
and also defining the results of the matches played. We needn’t consider appearances
for Liverpool because evidently Liverpool is represented by ‘a single player who plays all
their matches’. The code for performing the above can be found in Appendix D.3.

The optimisation took 56 seconds to complete 131 iterations from a random starting
point, and the optimum value of the negative log-likelihood function is 359.14. The
reported estimates of the parameters for the model are given in Table 5.2. The values of
the parameters estimated using GLM are also given in the table, as per Section 2.4.3. The
fact that the values of the parameters estimated from both models are similar validates
the written functions and the optim() algorithm we have employed.

Team Team composition Davidson
model model

Liverpool 0.2147 0.2160
Arsenal 0.0824 0.0821
Aston Villa 0.0445 0.0441
Blackburn Rovers 0.0141 0.0141
Bolton Wanderers 0.0130 0.0130
Chelsea 0.1531 0.1517
Everton 0.0486 0.0480
Fulham 0.0269 0.0269
Hull City 0.0101 0.0101
Manchester City 0.0195 0.0195
Manchester United 0.2433 0.2454
Middlesbrough 0.0085 0.0085
Newcastle 0.0101 0.0101
Portsmouth 0.0141 0.0141
Stoke City 0.0166 0.0166
Sunderland 0.0101 0.0101
Tottenham Hotspur 0.0228 0.0229
West Bromwich Albion 0.0078 0.0078
West Ham United 0.0229 0.0229
Wigan Athletic 0.0169 0.0166

ν̂ 0.8503 0.8508

Table 5.2: Table showing estimated parameters under the team composition model and
under the Davidson model.

5.2.5 Liverpool F.C. composed of two players

In this second illustration, we will assume that Liverpool F.C. is composed of just two
midfield players, Steven Gerrard and Xabi Alonso. Both players play in similar roles in
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the centre of midfield, although it is generally thought that Gerrard is a better player than
Xabi Alonso. This fact is backed up by the Actim index1: in the 2008/09 season, Gerrard
was ranked 9th overall in the EPL, 50 places above 59th placed Alonso. Hopefully, the
team composition model will be telling the same story.

We will be considering Liverpool’s matches against local rivals Everton F.C. from
season 2004/05 until 2008/09. Matches against Everton were chosen because there exists
a substantial variation in results between the two teams, as well as in Gerrard and
Alonso’s appearances. This would ensure good results from a relatively small data set.

The procedure to run this optimisation would be to define the data frame for appear-
ances of Gerrard and Alonso and the corresponding match results against Everton, then
running optim() using the written functions. The code for this procedure can be found
in Appendix D.4. The fact that we’re dealing with just a single opponent for Liverpool
simplifies matters very much.

The optimisation algorithm was run 10 times starting from different initial values,
and all 10 results were very close to each other. Repeated runs were done to see if there
were any variations in the optimisation results. The fact that all 10 results were close to
each other (within 0.00001) suggests that optimisation has reached a stationary point.
Moreover, the derivative functions evaluated at these stationary points were very close
to zero. The model ranked Gerrard (φi = 1.89) above Alonso (φi = 0.829), which was
what we postulated earlier. Surely, this validates the whole concept behind the team
composition model.

value of
Run log φGerrard log φAlonso log ν derivative

at optimum
1 0.63683 -0.18713 -0.32265 ( 1.23E-05, 6.87E-06, 1.96E-05)
2 0.63679 -0.18712 -0.32267 ( -1.20E-05, -9.58E-07, -1.28E-05)
3 0.63681 -0.18714 -0.32266 ( -1.22E-08, -4.21E-06, 7.24E-06)
4 0.63682 -0.18713 -0.32266 ( 5.09E-06, 3.43E-06, 1.43E-06)
5 0.63679 -0.18713 -0.32266 ( -1.19E-05, -3.52E-06, 2.07E-07)
6 0.63679 -0.18711 -0.32266 ( -8.48E-06, 7.84E-06, -1.01E-05)
7 0.63681 -0.18711 -0.32267 ( 3.05E-06, 1.30E-05, -5.05E-05)
8 0.63683 -0.18715 -0.32265 ( 8.81E-06, -5.53E-06, 2.06E-05)
9 0.63685 -0.18708 -0.32263 ( 2.07E-05, 3.56E-05, 7.31E-05)
10 0.63676 -0.18712 -0.32266 ( -2.76E-05, -3.51E-06, 2.25E-05)

Table 5.3: Result of 10 runs of the optimisation algorithm

1The Actim Index is the official player ratings system of the English Premier League. The Actim
Index ranks players weekly based on their performances on the pitch according to their playing position,
throughout the season.
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5.2.6 Liverpool F.C. 2008/09 season

We now turn to analysing Liverpool’s players during the 2008/09 season. As was pre-
viously conducted in the last two sections, the first thing to be done is to set up the
appropriate data frame for the likelihood function to calculate. The data in this case
would be the results of Liverpool’s matches with the corresponding players who played
in those matches, and also the results of the rest of the teams.

A total of 23 players featured in Liverpool’s matches that season. However, there are
some players which played mainly as substitutes throughout the season. These players
arguably do not contribute to the end result of the match. Jermaine Pennant appeared
just 3 times the whole of the season, while Damien Plessis appeared just once. These
two players are excluded from the analysis.

There is also the case where players played all matches in the whole of the season.
Because we are using an optimisation algorithm, there will be the possibility that the
algorithm will not be able to distinguish between players who have the exact appearance
data. Jamie Carragher, Pepe Reina and Dirk Kuyt played in all games of the season.
What we will do is just replace the ability parameters for these players with one single
parameter representing the abilities of these three players combined. Removing the
previous two players along with combining these three players, Liverpool has now 19
distinct players.

As starting values for the optimisation algorithm, we shall use the team ability pa-
rameters obtained as in the Davidson model in Section 3.3. Additionally, assign random
starting values for the 19 Liverpool players sampled from a standard normal distribution.

The procedure would be as follows. First, we run optim using the standard settings
without any restrictions. This algorithm is the Nelder-Mead method, a heuristic sim-
plex algorithm commonly used for minimising an objective function in multidimensional
space. Next, we would use the optimal values obtained by the Nelder-Mead method as
starting values for the L-BFGS algorithm. This algorithm is a quasi-Newton optimisation
technique, which makes use of the derivatives of the likelihood function to search for a
stationary point. Table 5.4 shows the result of this procedure.

The proximity of the optimised log-likelihood values in the table indicates that the
optimisation algorithm may have reached a stationary point. The minimum value of the
log-likelihood function is roughly 356 in all 50 iterations. The Euclidean distance of the
derivatives evaluated at each stationary point from zero is given in the fourth column of
the above table. This is given by the formula

d =

√√√√ m∑
i=1

(
∂l

∂φi

)2

+
n∑
i=2

(
∂l

∂αi

)2

+
(
∂l

∂ν

)2

.
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Distance of
Run Nelder-Mead L-BFGS derivatives

from zero
1 356.71 355.86 2.36
2 356.44 356.03 1.78
3 355.52 355.32 2.87
4 356.23 355.95 2.17
5 355.85 355.71 3.49
6 356.81 356.67 2.85
7 356.58 355.33 1.99
8 356.06 355.80 2.19
9 356.91 356.86 4.43
10 356.06 355.39 1.68
11 357.14 356.89 2.99
12 356.41 356.21 3.84
13 356.74 356.57 2.27
14 356.93 355.70 3.83
15 355.87 355.52 2.10
16 356.08 355.72 3.77
17 356.16 355.73 7.16
18 355.97 355.86 2.39
19 355.98 355.91 3.62
20 355.87 355.72 3.28
21 356.16 355.83 3.61
22 356.02 355.85 6.11
23 355.70 355.56 3.78
24 355.51 355.20 3.14
25 356.21 355.73 1.89

Distance of
Run Nelder-Mead L-BFGS derivatives

from zero
26 356.41 356.02 4.22
27 355.95 355.71 3.37
28 356.36 355.95 3.60
29 357.60 357.19 0.81
30 356.39 356.36 4.17
31 355.28 355.16 2.97
32 355.87 355.69 3.61
33 355.87 355.57 2.23
34 356.34 356.20 1.90
35 355.91 355.62 3.21
36 356.19 356.01 4.02
37 356.01 355.83 3.33
38 356.22 356.05 4.13
39 355.59 355.37 4.36
40 356.07 355.56 1.98
41 356.70 356.04 2.24
42 356.29 355.86 3.73
43 356.46 355.58 2.00
44 355.85 355.70 7.08
45 356.60 355.82 1.50
46 356.07 355.50 1.67
47 355.53 355.48 3.33
48 357.05 356.19 2.13
49 355.24 355.06 5.38
50 356.68 356.56 2.80

Table 5.4: Result of optimisation

These values will give us an indication of whether or not the values obtained are
stationary values or not. It seems that these distances are not very close to zero (average
distance of 3.19), which suggest that these stationary points might not be global minima.

The discussion in Section 5.2.3 led us to be cautious about the stationarity of these
points, because they could in fact just be saddle points, due to the possible non-convexity
nature of the minimisation problem. We can check this by examining the eigenvalues of
the Hessian matrix generated by optim. Alternating signs of the eigenvalues obtained
this way would indicate that the stationary point is a saddle point. Using the function
eigen, we can obtain the eigenvalues of the Hessian matrix in R. It turns out that all
50 runs of the algorithm produced indefinite Hessian matrices, which gives a sufficient
condition that all the above points are saddle points. This certainly raises doubts as
to whether or not these stationary values reached by the algorithm are in fact global
minima.

Efforts have been made to try and diagnose the problem with convergence. One
possible reason that stationary points were not achieved is that both the likelihood and
derivative functions written for the model were incorrect. However, the illustration in
Section 5.2.4 shows that the optimisation reached a stationary point in the case when
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Liverpool is a ‘single player’. The functions written have also been tested on other 1-
player case examples (Example 2, Davidson, 1970 and Example 1.2, Firth, 2005) and the
results validated (not shown in this dissertation).

Another possibility is the existence of multiple stationary points. This is evidenced
by the variable nature of the points which produce almost the same log-likelihood value
of 356. These plots can be found in Appendix E. But open closer inspection of the
plots, it appears that all the points are seemingly unique, implying there are at least
50 different stationary points. This is quite unlikely, although not impossible. The
example in Section 5.2.5 demonstrates that the optimisation works well when there are
two players in a team. It might just be the case that extra work needs to be done to
ensure convergence for larger number of players and teams.

Whatever the case, we find ourselves unable to elaborate on the results of the opti-
misation. Any findings or conclusions from these results may prove to be unreliable, so
it is best to stop short of giving any untrustworthy interpretation. We will suggest some
other models which might be used to analyse player abilities in the next section.

5.3 Alternative models to estimate player abilities

We have seen in the previous section that the team composition model did not yield any
reliable results. This stems from the fact that the optimisation problem was not a convex
problem, and thus the stationary points were not global optima. To overcome this, we
should suggest a model that gives a convex optimisation formulation to solve, so that
we can get reliable maximum likelihood estimates. Three suggestions will be discussed
below.

5.3.1 Suggestion 1: Team composition model on log scale

The non-linearity of the team composition model arises from the log of sums that can be
seen from the equations in (5.5). It is possible to convert the team composition model
into one that is linear by reconsidering using the parameters on the log scale instead.
Denote the ability parameters of the m Liverpool players as ψi ∈ R, i = 1, . . . ,m. As
before, the ability for Liverpool as a whole will be the sum of the abilities of the individual
players fielded in that match. So let λjh denote the ability of Liverpool against team j
in match h. We can write

λjh = ψ1I1jh + ψ2I2jh + · · ·+ ψmImjh,

for all appropriate matches h. Let the ability parameter of the remaining teams be
denoted by λi ∈ R, i = 2, . . . , k. The crucial difference here is that all the ability
parameters are allowed to be negative.
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Instead of considering outcomes of matches, following Huang, Lin, & Weng (2008), we
will consider the teams’ actual performances as random variables Xjh (for Liverpool) and
Xi (for rest of teams). This is exactly the same method as described by Bradley (1965)
which we have seen in Section X, whereby we consider using the logistic distribution with
scale parameter 1 on the difference between the two random variables. But instead of
taking log λi − log λj as the location parameter, we just use λi − λj . In Liverpool’s case
this would be:

P[1 beats j] = P[Xjh −Xj > 0]

=
[
1 + e−(λjh−λj)

]−1

=
eλjh

eλjh + eλj
,

and

P[j beats 1] =
eλj

eλjh + eλj
.

For all other teams i ∈ {2, . . . , k},

P[i beats j] = P[Xi −Xj > 0]

=
[
1 + e−(λi−λj)

]−1

=
eλi

eλi + eλj
.

If we use our notation that λi = logαi then the above model bears striking resem-
blance to the original Bradley-Terry model. Indeed, in the special case when team 1
consists of only 1 player, the model reduces to the original Bradley-Terry model. How-
ever, the main distinction between the two models is that in the team composition model,
the individual ability parameters are added on the ‘normal’ scale, whereas in this model,
the individual ability parameters are added on the log scale (which means the parameters
are multiplied on the ‘normal’ scale). To see this, take ψi = log φi. So what we have
here is a model which is a ‘sum of logs’ instead of a ‘log of sums’, which leads to it being
non-linear. Moreover, when we write the model for Liverpool in the form:

log(n1jp1j|1) = ψ1I1jh + · · ·+ ψmImjh + aij

log(n1jp1j|j) = λj + aij ,
(5.6)

we can clearly see how this is a linear model. This model can be easily solved to obtain
the MLEs, using techniques such as glm() in R. In the above discussion, the probability
of ties were not considered, but this model can be easily extended via the Davidson
model, and the resulting model would still be a linear model.
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So why was this model not used instead? Firstly, the ability parameters are allowed
to be negative, which would imply that some of the players actually have a negative
contribution to the team. While this could potentially be true, it wouldn’t seem at
all plausible given that the EPL consists of professional footballers at the top of their
game. Secondly, converting players’ ability parameters from the log scale to the normal
scale would mean Liverpool’s team ability is the product of the players’ abilities. This
doesn’t seem appealing because when we talk about a team’s ability as being composed
of its players, we generally would like this to be a sum rather than a product of players’
abilities. For these reasons, the team composition model of Section 5.1 was chosen, and
the suggested ‘linear’ team composition model above is discussed here merely to provide
an alternative for the team composition model.

5.3.2 Suggestion 2: Using normally distributed measured outcomes

The models that we have looked at so far can be classified as models which have binary
outcomes (or trinary rather), i.e. the outcome of a particular match between two teams
is either a win, lose or tie. We could instead consider using “measured” outcomes to
quantify strength. The outcome variable could be the number of points scored in a
basketball game or the number of goals scored in the case of football. The difference in
goals scored in football could well indicate the strength of the opposing team; a higher
goal difference could imply a weak opposing team and vice versa. The idea here is the
same as in the previous section, except that binary outcomes are replaced by that of
measured outcomes. Glickman (1993) is an example where measured outcomes were
considered using normal distributions. We briefly explore the model here.

Let λjh, λi and ψi represent the parameters of the log team composition model as
defined in the previous section. We now assume that the teams’ and players’ abilities are
random variables which are normally distributed with some unknown variance σ2:

Xi ∼ N(λi, σ2)

Xjh ∼ N(λjh, σ2)

where X with the dual subscripts represent the random variable associated with team
1 (Liverpool) and X with the single subscript represent the random variable associated
with the rest of the teams. We would then assume that the difference in goals scored
between two teams would be the difference of the corresponding random variable, and
that these differences are independent of each other. In the case of Liverpool,

Xjh −Xj ∼ N(λjh − λj , 2σ2)

⇔ Xjh −Xj ∼ N(ψ1I1jh + · · ·+ ψmImjh − λj , 2σ2)

for all j ∈ {2, . . . , k}, and for the rest of the teams,

Xi −Xj ∼ N(λi − λj , 2σ2)
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The next step would be to write out the likelihood function for these normally dis-
tributed random variables in terms of ψ, λ and σ, so we can use optimisation techniques
to minimise the negative log-likelihood function. These optimisation problems can be
proved to be convex and unconstrained, so simple algorithms can be deployed to solve
them and obtain global minima. Detailed methods to solve the above model including
derivations of the likelihood can be found in papers such as Huang et al. (2008) and
Glickman (1993).

To accommodate ties in the model, it is suggested that we use the Rao & Kupper
(1967) extension. The main reason for this is because since we are dealing with continuous
random variables, the probability of a tie between teams i and j would mean calculating
the probability that Xi = Xj . For continuous random variables, this probability is
zero. So we employ the Rao & Kupper model, so that a tie happens when the absolute
difference between the random variables lies within a certain interval η, i.e. |Xi−Xj | < η.
The probabilities for wins for each team would then have to be adjusted to accommodate
this change, namely a win for team i would occur when the difference is greater than η.
We could ease the calculations by providing a suitable value for η or we can just let the
model estimate this value.

5.3.3 Suggestion 3: Using logistically distributed measured outcomes

This idea really is a fusion of Suggestions 1 and 2 above. Like Suggestion 2, we use random
variables to model the outcome of goal difference between two teams. But instead of using
normal distributions on the difference random variables, we use the logistic distribution
with location parameter λi − λj . As we have seen under Suggestion 1, for Liverpool and
the other teams respectively we have

P[Xjh −Xj ≤ x] =
eλj

eλjh−x + eλj

and P[Xi −Xj ≤ x] =
eλj

eλi−x + eλj
,

where λjh = ψ1I1jh + · · · + ψmImjh and λi are the usual parameters of the team com-
position model. We can differentiate the cumulative distribution function to obtain the
density functions

fXjh−Xj (x) =
eλjh+λj−x(

eλjh−x + eλj
)2

and fXi−Xj (x) =
eλi+λj−x(

eλi−x + eλj
)2 .

From the two equations above, we can then write out the log-likelihood function and
attempt to maximise it. Huang et al. (2008) have detailed the algorithm used to solve the

47



above model, albeit they have shown it for a more general case of the estimating players’
abilities, and not just concentrating on one team as we have done for Liverpool here. The
reader is invited to refer to the paper by Huang et al. (2008) for the full derivation and
solving of the above model. What is not discussed in their paper however, is the method
to deal with ties. As in Suggestion 2, we propose that the Rao & Kupper extension be
used for the same reasons stated previously.

Huang et al. (2008) also explains the different advantages of the using the two mea-
sured outcome models in Suggestions 2 and 3. They concluded that the normally dis-
tributed measured outcome model focuses more on performances against extreme oppo-
nents: meaning to say that wins over strong opponents and losses to weak opponents
highly influence the ranking of that team. On the other hand, the logistically distributed
measured outcome model is less sensitive in the sense that it treats all comparisons evenly.
The choice of model would then be on the discretion of the modeller, but unfortunately
we do not have time to perform this check and doing so would be beyond the scope of
this dissertation.
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6. Conclusions

There were three main variations of the Bradley-Terry model used in this dissertation.
The first one, introduced by Davidson (1970), extended the model to include ties in
paired comparison. This was very much suitable for analysing the English Premier League
football matches. We showed that these Davidson rankings are similar to the league table,
as the Bradley-Terry model has all the information needed to infer the correct league
standings. The model was not, however, a good predictor of future league standings
based on current match results.

We also discussed the effects of playing at home for teams in the EPL. We looked
at two different models for home advantage - a common home advantage model and an
individual home advantage model. The individual home advantage effects were extremely
varied from season to season. A hypothesis test to find out whether these variations seen
were real, but not implemented due to lack of time.

Finally, we looked at estimating players’ abilities from their team’s match results. We
looked at a simplification of the Generalized Bradley-Terry model by Huang et al. (2006),
whereby we concentrated on just Liverpool F.C.’s squad. While two examples essentially
showed a ‘proof of concept’ of the team composition model, the model failed to obtain
reliable estimates of the parameters for the model. The discussion ensued pointed to a
failure in convergence, and further work was suggested to try and obtain estimates of
players’ abilities via other models.
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A. Modelling multinomial data as
Poisson variables

We detail the proof of modelling multinomial (trinomial) data as Poisson random vari-
ables. Let αi and ν be as in the Davidson model with k players as introduced in Section
3, and write θ = (α1, . . . , αn, ν). Consider the two following sampling experiments:

Experiment 1

n independent observations are obtained presumed to be from Poisson distributions
with parameters mi(θ). Here, the mis are functions which maps θ onto the positive
reals. Let the maximum likelihood estimate (MLE) of this experiment be θ̂.

observation distribution
y1 Poi

(
m1(θ)

)
y2 Poi

(
m2(θ)

)
...

...
yn Poi

(
mn(θ)

)

Experiment 2

Independent trinomial observations relating to the outcome of a match (win, loss,
tie) between two players i and j are obtained. There are k players, and each player
plays each other a total of nij times, making k(k − 1)/2 trinomial observations
in total. Using the Davidson model, let the maximum likelihood estimate of this
experiment be θ̂′.

no. observation distribution
1 (y12|1, y12|2, y12|0) Mult3

(
n12, (p12|1, p12|2, p12|0)

)
2 (y13|1, y13|3, y13|0) Mult3

(
n12, (p13|1, p13|3, p13|0)

)
...

...
k(k − 1)/2 (yk−1k|k−1, yk−1k|k, yk−1k|0) Mult3

(
n12, (pk−1k|k−1, pk−1k|k, pk−1k|0)

)
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The above setup is the GLM as specified in Section 3.2

Now suppose that the probability vector of each of the trinomial distributions can
be written in the form of functions mi divided by the number of observations. For the
Davidson model, this means equating the three probabilities as

pij|i =
αi

αi + αj + ν
√
αiαj

=: mγij|i(θ)/nij

pij|j =
αj

αi + αj + ν
√
αiαj

=: mγij|j (θ)/nij

pij|0 =
ν
√
αiαj

αi + αj + ν
√
αiαj

=: mγij|0(θ)/nij

(A.1)

where γij|l can be thought of a function mapping the triple notation (ij|l) for Experiment
2 onto {1, . . . , n}, which is the notation of Experiment 1. We arrange the triple indices
in increasing order. To better see this, compare the two notations in the table below. γ
maps the right indices to the left indices.

notation in notation in
Experiment 1 Experiment 2

1 (12|1)
2 (12|2)
3 (12|0)
4 (13|1)
...

...
n− 1 (k − 1k|k)
n (k − 1k|0)

We appeal to Theorem 13.4-1 of Bishop et al. (2007), which states that the MLEs are
the same under both sampling schemes, i.e. θ̂ = θ̂′, and that the functions mi in both
experiments are equal, if and only if the sum of the Poisson parameters relating to each
match between i and j is the number of times that i and j compete. In the above setup,
this is true, since we have from (A.1).∑

l∈{i,j,0}

mγij|l(θ) = nij ∀i, j ∈ {1, . . . , k|i < j}.

This means that we can model the components of the trinomial observations as inde-
pendent Poisson variables. The table below shows the distribution of each trinomial
observation.

54



observation distribution
y12|1 Poi

(
m1(θ)

)
y12|2 Poi

(
m2(θ)

)
y12|3 Poi

(
m3(θ)

)
y13|1 Poi

(
m4(θ)

)
...

...
yk−1k|k Poi

(
mn−1(θ)

)
yk−1k|0 Poi

(
mn(θ)

)

In brief, the log-link Poisson GLM would read

log
(
mγij|i(θ)

)
= λi + aij

log
(
mγij|j (θ)

)
= λj + aij

log
(
mγij|0(θ)

)
= λ+ 1

2(λi + λj) + aij

∀i, j ∈ {1, . . . , k|i < j}, c.f. (3.5), and we can estimate the parameters using glm() in R.
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B. Analysing the EPL using the
Davidson model in R

The code used for analysing the EPL using the Davidson model is given here. There is a
written function which gives the appropriate design matrix for the Davidson model, and
will be given in the next section. In Section 3, there were a total of 4 models fitted, each
for the different time periods T10, T20, T30 and TF. Only one will be explained here,
due to the fact all of them are very similar, except for the data used.

B.1 Davidson model matrix generator

This function takes the number of teams competing as an argument, and returns the
appropriate model matrix.

epl.BTTmm <- function (k){
#function to create the model matrix for
#Bradley-Terry with ties (Davidson’s model)
tmp <- matrix(0, k, k)
index1 <- t(row(tmp))[lower.tri(tmp)]
index2 <- t(col(tmp))[lower.tri(tmp)]
l <- k*(k-1)/2
x <- matrix(0, nrow=3*l, ncol=k+l+1)
for(i in 1:l){

x[3*(i-1)+1, index1[i]] <- 1
x[3*(i-1)+2, index2[i]] <- 1
x[3*(i-1)+3, index1[i]] <- 0.5
x[3*(i-1)+3, index2[i]] <- 0.5
x[3*(i-1)+3, k+1] <- 1
x[3*(i-1)+1, k+1+i] <- 1
x[3*(i-1)+2, k+1+i] <- 1
x[3*(i-1)+3, k+1+i] <- 1

}
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return(x)
}

B.2 Analysis for time period TF

Here is the code for the analysis of the whole of 2008/09 season of the EPL. The results
were read into a data frame. Using the model matrix as described above, we fitted the
no intercept model using glm(). The coefficients were extracted, and since the model is
unidentifiable, we can scale the parameters so that they add up to 1.

## Read in results for wins and losses
##

epl0809winlos <- read.table("/Users/haziq/Desktop/EPL0809/epl0809.csv",
head=T, sep=",")

epl0809winlos <- epl0809winlos[,-1]
teams <- dimnames(epl0809winlos)[[2]]
epl0809winlos <- as.matrix(epl0809winlos)
dimnames(epl0809winlos) = list(winner = teams, loser = teams)
winners <- col(epl0809winlos)[lower.tri(epl0809winlos)]
losers <- row(epl0809winlos)[lower.tri(epl0809winlos)]

## Then read in results for ties
##

epl0809tie <- read.table("/Users/haziq/Desktop/EPL0809/epl0809tie.csv",
head=T, sep=",")

epl0809tie <- epl0809tie[,-1]
epl0809tie <- as.matrix(epl0809tie)
dimnames(epl0809tie) = list(teams, teams)

## Set up the data as one dimensional Poisson random variables
##

tepl0809winlos <- t(epl0809winlos)
tepl0809tie <- t(epl0809tie)
wins <- tepl0809winlos[lower.tri(epl0809winlos)]
losses <- epl0809winlos[lower.tri(epl0809winlos)]
ties <- tepl0809tie[lower.tri(epl0809tie)]

tmp <- cbind(teams[winners], teams[losers], wins, losses, ties)
epl0809 <- as.data.frame(tmp)
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dimnames(epl0809)[[2]] <- c("i", "j", "Wij", "Wji", "Tij")

epl0809.vec <- as.numeric(as.vector(t(epl0809[, 3:5])))
epl0809.fit <- glm(formula = epl0809.vec ~ epl.BTTmm(20) + 0,

family = poisson(link = log))

## Extracting the coefficients
##

epl0809.coefs <- c(exp(coef(epl0809.fit))[1:20]/sum(exp(coef(epl0809.fit))[1:20]),
exp(coef(epl0809.fit))[21])

names(epl0809.coefs) <- c(teams, "nu")
epl0809.coefs
names(sort(epl0809.coefs[1:20], decr=T))
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B.3 Tables of Davidson rankings for different time periods

T10 Team B-T Ability
1 Liverpool 0.5579
2 Chelsea 0.1899
3 Manchester United 0.0794
4 Aston Villa 0.0497
5 Hull City 0.0243
6 Portsmouth 0.0176
7 Arsenal 0.0163
8 Manchester City 0.0091
9 Everton 0.0085
10 Middlesbrough 0.0071
11 Blackburn Rovers 0.0070
12 Sunderland 0.0062
13 Stoke City 0.0047
14 Fulham 0.0044
15 West Ham United 0.0039
16 West Bromwich Albion 0.0036
17 Wigan 0.0034
18 Newcastle United 0.0033
19 Tottenham Hotspur 0.0020
20 Bolton Wanderers 0.0018

T20 Team B-T Ability
1 Liverpool 0.2214
2 Manchester United 0.1770
3 Chelsea 0.1429
4 Aston villa 0.0904
5 Arsenal 0.0663
6 Everton 0.0441
7 Wigan 0.0286
8 Hull City 0.0284
9 Fulham 0.0281
10 West Ham United 0.0213
11 Newcastle United 0.0188
12 Portsmouth 0.0185
13 Bolton Wanderers 0.0175
14 Manchester City 0.0162
15 Sunderland 0.0154
16 Stoke City 0.0149
17 Middlesbrough 0.0142
18 Tottenham Hotspur 0.0139
19 Blackburn Rovers 0.0115
20 West Bromwich Albion 0.0108

T30 Team B-T Ability
1 Manchester United 0.2132
2 Liverpool 0.1940
3 Chelsea 0.1277
4 Arsenal 0.0770
5 Aston villa 0.0631
6 Everton 0.0491
7 Wigan 0.0307
8 Fulham 0.0288
9 West Ham United 0.0286
10 Tottenham Hotspur 0.0243
11 Manchester City 0.0224
12 Portsmouth 0.0188
13 Hull City 0.0182
14 Stoke City 0.0181
15 Bolton Wanderers 0.0173
16 Blackburn Rovers 0.0167
17 Sunderland 0.0165
18 Newcastle United 0.0146
19 Middlesbrough 0.0118
20 West Bromwich Albion 0.0092

Table B.1: Tables showing the Bradley-Terry abilities for different time periods during
the season.

59



C. Analysing home advantage effect
in the EPL in R

The code used to analyse home advantage effects in the EPL will be given here. A
function was written to provide the model matrix for both the common and individual
home advantage models. These two functions will be given below. Also, a total of 16
models were fitted, two for each of the 8 seasons analysed. Only two of these models,
the 2008/09 season analysis, will be detailed here because the rest are exactly the same
barring the different data used.

C.1 Common home advantage model matrix generator

This function takes the number of teams competing and returns the model matrix for
the common home advantage model.

homeadv.mat <- function(k){
#function to create model matrix for common ha model
X <- matrix(TRUE, k, k)
diag(X) <- rep(FALSE, k)
home <- col(X)[X]
away <- row(X)[X]
l <- k*(k-1)
x <- matrix(0, 3*l, l+k+2)
for(i in 1:l){

x[3*(i-1)+1, home[i]] <- 1
x[3*(i-1)+1, k+1] <- 1
x[3*(i-1)+2, away[i]] <- 1
x[3*(i-1)+3, home[i]] <- 0.5
x[3*(i-1)+3, away[i]] <- 0.5
x[3*(i-1)+3, k+1] <- 0.5
x[3*(i-1)+3, k+2] <- 1
x[3*(i-1)+1, k+2+i] <- 1
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x[3*(i-1)+2, k+2+i] <- 1
x[3*(i-1)+3, k+2+i] <- 1

}
return(x)

}

C.2 Individual home advantage model matrix generator

This function takes the number of teams competing and returns the model matrix for
the individual home advantage model.

homeadv.mat2 <- function(k){
#function to create model matrix for indvidual ha model
X <- matrix(TRUE, k, k)
diag(X) <- rep(FALSE, k)
home <- col(X)[X]
away <- row(X)[X]
l <- k*(k-1)
x <- matrix(0, 3*l, l+2*k+1)
for(i in 1:l){

x[3*(i-1)+1, home[i]] <- 1
x[3*(i-1)+1, k+home[i]] <- 1
x[3*(i-1)+2, away[i]] <- 1
x[3*(i-1)+3, home[i]] <- 0.5
x[3*(i-1)+3, away[i]] <- 0.5
x[3*(i-1)+3, k+home[i]] <- 0.5
x[3*(i-1)+3, 2*k+1] <- 1
x[3*(i-1)+1, 2*k+1+i] <- 1
x[3*(i-1)+2, 2*k+1+i] <- 1
x[3*(i-1)+3, 2*k+1+i] <- 1

}
return(x)

}

C.3 Home advantage analysis of 2008/09 season

Here is the code for the analysis of home advantage effects of the 2008/09 season of the
EPL. As discussed, glm() was used and the estimated parameters extracted.

## Season 2008/09
## Read in home wins
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##

epl0809homewins <- read.table("/Users/haziq/Desktop/EPL-HOMEADV/Results/
2008-09/0809homewins.csv", head=T, sep=",")

epl0809homewins <- epl0809homewins[,-1]
teams0809 <- dimnames(epl0809homewins)[[2]]
epl0809homewins <- as.matrix(epl0809homewins)
dimnames(epl0809homewins) = list(homewinner = teams0809, awayloser = teams0809)

## Read in away wins
##

epl0809awaywins <- read.table("/Users/haziq/Desktop/EPL-HOMEADV/Results/2008-09/
0809awaywins.csv", head=T, sep=",")

epl0809awaywins <- epl0809awaywins[,-1]
epl0809awaywins <- as.matrix(epl0809awaywins)
dimnames(epl0809awaywins) = list(awaywinner = teams0809, homeloser = teams0809)

## Read in ties
##

epl0809ties <- read.table("/Users/haziq/Desktop/EPL-HOMEADV/Results/2008-09/
0809ties.csv", head=T, sep=",")

epl0809ties <- epl0809ties[,-1]
epl0809ties <- as.matrix(epl0809ties)
dimnames(epl0809ties) = list(home = teams0809, away = teams0809)

tmp <- matrix(TRUE, 20, 20) #way of indexing the home and
diag(tmp) <- rep(FALSE, 20) #away teams
home <- col(tmp)[tmp]
away <- row(tmp)[tmp]

homewins <- t(epl0809homewins)[tmp]
awaywins <- epl0809awaywins[tmp]
hometies <- t(epl0809ties)[tmp]

epl0809ha <- cbind(teams0809[home], teams0809[away], homewins, awaywins, hometies)
epl0809ha <- as.data.frame(epl0809ha)
dimnames(epl0809ha)[[2]] <- c("home", "away", "homewins", "awaywins", "tie")
epl0809ha.vec <- as.numeric(as.vector(t(epl0809ha[, 3:5])))

epl0809ha.fit <- glm(formula = epl0809ha.vec ~ homeadv.mat(20) + 0,
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family = poisson(link = log), maxit=1000000, trace=TRUE)
epl0809ha.coefs <- exp(coef(epl0809ha.fit))[1:22]
names(epl0809ha.coefs) <- c(teams0809, "homeadv", "tieparameter")

epl0809ha.fit2 <- glm(formula = epl0809ha.vec ~ homeadv.mat2(20) + 0,
family = poisson(link = log), maxit=1000000, trace=TRUE)

epl0809ha.coefs2 <- exp(coef(epl0809ha.fit2))[1:41]
names(epl0809ha.coefs2) <- c(teams0809, paste(teams0809, "homeadv", sep=""),

"tieparameter")
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D. Estimating players’ abilities in R

Firstly we discuss how the data of the match results and player appearances should
be compiled. Then we introduce the function to calculate the log-likelihood and their
derivatives of the model. These functions are a direct translation of the equations we
obtained in Section 5. Next, the code for the two examples in Sections 5.2.4 and 5.2.5
are given. Finally, we present the analysis part.

In order for the written functions to calculate the log likelihood and derivatives at a
certain parameter value, it needs to call on a specifically compiled data. All the pertaining
data should be in a data frame called dat. In the analysis of Liverpool players’ abilities,
data will contain 20 items, the first 19 of which are match results and player appearances
for Liverpool against the rest of the teams. The last item is the match results of al
the other teams against each other. While the functions below were coded specifically
for the purpose of obtaining Liverpool players’ estimated abilities, the function can be
customised to obtain other teams’ players’ estimated abilities, by appropriately editing
the data frame dat.

Data pertaining to the EPL and Liverpool squad appearances were obtained from
Soccerbase’s website (http://www.soccerbase.com).

D.1 Function to calculate log-likelihood

The function takes a vector of parameters as an argument, and returns the value of the
negative log-likelihood evaluated at the parameter value. The parameters in the vector
are the players’ abilities, the teams’ abilities and the tie parameter, respectively.

loglik.bttc <- function(param){
#The likelihood function for BT with ties and team composition
#Team 1 is Liverpool

m <- length(players) #no of players in team 1
n1 <- length(teams) - 1 #no of opponents of team 1
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nu <- exp(param[m+n1]) #tie parameter
phi <- exp(param[1:m]) #team 1 players abilities on log scale
if(n1 == 1) alpha <- 1
else{

alpha <- exp(param[(m+1):(m+n1-1)]) #parameters for other teams
alpha <- c(alpha, 1) #setting last ability to 1

}

loglik.1 <- function(row.dat){
## Compute the log-likelihood contribution from a single match.
## The relevant information lies in the rows of the matrix L2
## or L3.

win <- row.dat[1] == 1 #these 3 lines determine what the
lose <- row.dat[1] == -1 #outcome of the match was
draw <- row.dat[1] == 0 #
#this line adds the parameters of players
#who played in the match
alpha1k <- row.dat[-1] %*% phi
sqrt.term <- nu * sqrt(alpha1k * alpha2)
#alpha2 is defined to be the current team
#team 1 is playing against
denom <- alpha1k + alpha2 + sqrt.term
result <- (win * alpha1k + lose * alpha2 + draw * sqrt.term) / denom
return(log(result))

}

loglik.dav <- function(M){
## Compute the davidson likelihood for the remaining teams, i.e.
## all teams excluding Liverpool. This takes a matrix of 3 columns,
## which are Wij, Wji and Tij. This is read from dat$OtherResults
##

M <- as.matrix(as.vector(M)) #convert data.frame to matrix
R <- matrix(0, n1, 2) #R is a matrix whose columns are no of wins

#and no of ties; row are the teams

## The following lines help create a set of indices such that
## i < j, for i,j=1,...,n1 This gives all possible combinations
## of teams pairing up with each other without repetition:
## 1V2, 1V3, ..., 1Vn1, 2V3, 2V4, and so on. The data matrix
## has been set up so that indexing is made easy.
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x <- matrix(NA, n1, n1) #create a dummy matrix of dimension n1 x n1
home <- col(x)[lower.tri(x)]
away <- row(x)[lower.tri(x)]

## Now need to sum up the wins and ties for each team.
##

for(i in 1:n1){
#this counts no of wins
R[i,1] <- (home == i) %*% M[,1] + (away == i) %*% M[,2]
#this counts no of ties
R[i,2] <- (home == i) %*% M[,3] + (away == i) %*% M[,3]

}
#the statistic s_i = 2 x wins + tie as in the Davidson model
S <- 2*R[,1] + R[,2]
T <- sum(R[,2]) / 2 #total no of ties

## Do the calculation in log scale straight away because the
## numbers can get very large or very small.
##

result <- sum(0.5 * S * log(alpha)) + T * log(nu)
for(i in 1:nrow(M)){

rij <- sum(M[i,]) #total no of mathces played between i and j
alphai <- alpha[home[i]] #the home and away indices

#come in handy here
alphaj <- alpha[away[i]]
sqrt.term <- sqrt(alphai * alphaj)
result <- result - log((alphai + alphaj + nu * sqrt.term)^rij)

}
return(result)

}

## Calculating the resulting log-likelihood value
##

result <- 0
if(n1 > 1){

#only need to compute the Davidson likelihood if there are more
#than 1 opponents for team 1
result <- loglik.dav(dat$Oth[,3:5])

}
for(i in 1:n1){
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#next we add the team composition likelihood to the results
alpha2 <- alpha[i]
result <- result + sum(apply(dat[[i]], 1, loglik.1))

}

## And return the -(log likelihood)
##

return(-result)
}

D.2 Function to calculate derivatives of log-likelihood

The function takes the same parameter param to calculate the log-likelihood, and returns
a vector of derivatives with respect to each parameter, evaluated at the parameter value.

loglik.bttc.der <- function(param){
## Function to calculate derivatives of log-likelihood
##

m <- length(players) #no of players in team 1
n1 <- length(teams) - 1 #no of opponents of team 1

nu <- exp(param[m+n1]) #tie parameter
phi <- exp(param[1:m]) #team 1 players abilities on log scale
if(n1 == 1) alpha <- 1
else{

alpha <- exp(param[(m+1):(m+n1-1)]) #parameters for other teams
alpha <- c(alpha, 1) #setting last ability to 1

}

## Derivative of log-liklihood wrt tie parameter
##

l1.nu <- function(row.dat){
alpha1k <- row.dat[-1] %*% phi #this line adds the parameters of the

#players who played in the match
sqrt.term <- sqrt(alpha1k * alpha2) #alpha2 is defined to be the current

#team team 1 is playing against
denom <- alpha1k + alpha2 + nu * sqrt.term
result <- (row.dat[1] == 0) / nu - sqrt.term / denom
return(result)
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}

## Derivative of log-liklihood wrt players
##

l1.phi <- function(row.dat){
alpha1k <- row.dat[-1] %*% phi
sqrt.term <- sqrt(alpha1k * alpha2)
denom <- alpha1k + alpha2 + nu * sqrt.term
win <- row.dat[1] == 1
tie <- row.dat[1] == 0
result <- (row.dat[-1] == 1) * ((win/alpha1k) + (tie/(2*alpha1k))

- (1 + 0.5*nu*sqrt(alpha2/alpha1k))/denom)
return(result)

}

## Derivative of log-liklihood wrt teams
##

l1.alpha <- function(row.dat){
alpha1k <- row.dat[-1] %*% phi
sqrt.term <- sqrt(alpha1k * alpha2)
denom <- alpha1k + alpha2 + nu * sqrt.term
win <- row.dat[1] == -1
tie <- row.dat[1] == 0
result <- win / alpha2 + tie / (2*alpha2)

- (1 + 0.5*nu*sqrt(alpha1k/alpha2)) / denom
return(result)

}

## Derivative of Davidson log-liklihood wrt tie parameter
##

x <- matrix(NA, n1, n1) #create a dummy matrix of dimension n1 x n1
home <- col(x)[lower.tri(x)]
away <- row(x)[lower.tri(x)]

ldav.nu <- function(M){
M <- as.matrix(M)
R <- matrix(0, n1, 2)
for(i in 1:n1){

R[i,1] <- (home == i) %*% M[,1] + (away == i) %*% M[,2]
R[i,2] <- (home == i) %*% M[,3] + (away == i) %*% M[,3]
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}
T <- sum(R[,2]) / 2
result <- T / nu
for(i in 1:nrow(M)){

nij <- sum(M[i,]) #total no of mathces played between i and j
alphai <- alpha[home[i]] #use the home and away indices
alphaj <- alpha[away[i]]
sqrt.term <- sqrt(alphai * alphaj)
numer <- nij * sqrt.term
denom <- alphai + alphaj + nu * sqrt.term
result <- result - numer/denom

}
return(result)

}

## Derivative of Davidson log-liklihood wrt teams
##

ldav.alpha <- function(M){
M <- as.matrix(M)
R <- matrix(0, n1, 2)
for(i in 1:n1){

R[i,1] <- (home == i) %*% M[,1] + (away == i) %*% M[,2]
R[i,2] <- (home == i) %*% M[,3] + (away == i) %*% M[,3]

}
S <- 2*R[,1] + R[,2]
T <- sum(R[,2]) / 2
result <- 0.5 * S / alpha
for(i in 1:n1){

alphai <- alpha[i]
for(j in (1:n1)[-i]){

tmp <- (home == i) * (away == j) + (home == j) * (away == i)
index <- which(tmp == 1)
alphaj <- alpha[j]
nij <- sum(M[index,])
numer <- nij * (2 + nu*sqrt(alphaj/alphai))
denom <- 2*(alphai + alphaj + nu*sqrt(alphai*alphaj))
result[i] <- result[i] - numer/denom

}
}
return(result)

}
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## Now add all the relevant derivatives
##

result <- rep(0, length(param))
names(result) <- names(param)

for(i in 1:n1){
#add contribution from the first log-likelihood derivative
#for tie parameter and players
alpha2 <- alpha[i]
result[m+n1] <- result[m+n1] + sum(apply(dat[[i]], 1, l1.nu))
if(m == 1) result[1:m] <- result[1:m] + sum(apply(dat[[i]], 1, l1.phi))
else result[1:m] <- result[1:m] + colSums(t((apply(dat[[i]], 1, l1.phi))))

}
if(n1 > 1){
#add Davidson log-likelihood derivative for tie parameter
result[m+n1] <- result[m+n1] + ldav.nu(dat$Oth[,3:5])
for(i in 1:(n1-1)){

#add both first and Davidson log-likelihood derivative for teams
alpha2 <- alpha[i]
result[m+i] <- sum(apply(dat[[i]], 1, l1.alpha))

+ ldav.alpha(dat$Oth[,3:5])[i]
}}

## Finally return the negative log-likelihood derivative
##

return(-result)
}

D.3 Code for Section 5.2.4

We need to set up the appropriate dataframe dat first and foremost. This contains a list
of Liverpool’s match results and appearances in the first 19 elements of the data frame,
and the remaining team’s results in the 20th element. We then use optim() to minimise
the negative log-likelihood function as written above.

## Import results from 2008/09 season
## Set up Liverpool as one player who plays all season
##

liv1player <- read.table("/Users/haziq/Desktop/EPL0809-TEAMCOMP/liv.txt",
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head=T, sep=",")
dimnames(liv1player)[[2]][9] <- "rest"
liv1player <- liv1player[,c(1,2,9)]

teams <- c("LIV", levels(liv1player[,1]))
players <- "LIV1player"

## Compile into list
##

dat <- list()
for(i in 1:19){

dat[[i]] <- liv1player[(2*i - 1):(2*i), -1]
rownames(dat[[i]]) <- NULL

}

## Importing other results
##

other.results <- read.table("/Users/haziq/Desktop/EPL0809-TEAMCOMP/
otherresults.txt", header=T, sep=",")

dat[[20]] <- other.results

names(dat) <- c(teams[-1], "OtherResults")

## Create random starting values
##

theta.start <- c(rnorm(20))
names(theta.start) <- c(players, teams[-c(1,length(teams))], "lognu")

## Run optim
##

X <- optim(theta.start, loglik.bttc, gr=loglik.bttc.der, method="L-BFGS-B")
colnames(X) <- c(players, teams[-c(1,length(teams))], "lognu")

D.4 Code for Section 5.2.5

First set up the results of Liverpool against Everton for which Gerrard and Alonso played
in. After putting this into a data frame dat, we use optim() to find the maximum
likelihood estimates for this model. The results from 10 runs are collected in a matrix
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using a simple loop function.

## First set up the results matrix for Liv V Eve
## with only Gerrard and Alonso playing
##

geralo <- matrix(c(
-1,0,1,
0,1,1,
0,1,1,
1,1,1,
1,1,1,
1,1,0,
0,1,1,
-1,1,1,
1,0,1,
1,1,1,
1,1,0,
-1,1,0
), nc=3, byrow=T)
dimnames(geralo)[[2]] <- c("result", "ger", "alo")

## Still need to compile the results into dataframe dat
##

dat <- list(EVE=geralo)

## Define players and teams
##

players <- c("ger","alo")
teams <- c("LIV", "EVE")

## Create random starting values
##

theta.start <- c(rnorm(3))
names(theta.start) <- c(players, "lognu")

## Then collect results in matrix X
##

X <- matrix(NA, 10, 3)
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print(Sys.time())
for(i in 1:10){

theta.start <- c(rnorm(3))
names(theta.start) <- c(players, "lognu")
x <- optim(theta.start, loglik.bttc, gr=loglik.bttc.der, method="L-BFGS-B")
X[i,] <- x$par
print(paste(i, "out of 50 completed at", Sys.time()))
print(paste("number of iterations is", x$cou[1]))
print(paste("value of likelihood function is", x$val))

}
colnames(X) <- c(players, "lognu")

D.5 Finding MLE using optim()

First create starting values for the algorithm. We shall do 50 runs of the Nelder-Mead
algorithm, and then use the values obtained as starting values for the L-BFGS-B method.
The Nelder-Mead values are stored in X, and the L-BFGS-B values are stored in Y. We
also store the Hessian matrices as calculated by optim in Z. Store the values of the log-
likelihood function in U and W respectively for the Nelder-Mead and L-BFGS-B method.

## Here are the teams and players
##
## 1 LIV 1 agg
## 2 ARS 2 alo
## 3 AST 3 arb
## 4 BLA 4 aur
## 5 BOL 5 bab
## 6 CHE 6 ben
## 7 EVER 7 car
## 8 FUL 8 dos
## 9 HUL 9 elz
## 10 MANC 10 ger
## 11 MANU 11 hyp
## 12 MID 12 ins
## 13 NEW 13 kea
## 14 POR 14 kyt
## 15 STO 15 luc
## 16 SUN 16 mas
## 17 TOT 17 ngo
## 18 WBR 18 pen
## 19 WHU 19 ple
## 20 WIG 20 rei
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## 21 rie
## 22 skr
## 23 tor
##

## Import players appearances and results for Liverpool
##

liv <- read.table("/Users/haziq/Desktop/liv2.txt", head=T, sep=",")

## Need to remove players pen and ple as they only played
## very little number of matches - won’t contribute to team
##

liv <- liv[,-c(20,21)]

## Also remove kyt and rei as they played all the matches. Replace
## car with carkytrei as the combined ability of these 3 players
##

liv <- liv[,-c(16,20)]
dimnames(liv)[[2]][9] <- "carkytrei"

teams <- c("LIV", levels(liv[,1]))
players <- dimnames(liv)[[2]]
players <- players[-(1:2)]

## Compile into list
##

dat <- list()
for(i in 1:19){

dat[[i]] <- liv[(2*i - 1):(2*i), -1]
rownames(dat[[i]]) <- NULL

}

## Importing other results
##

other.results <- read.table("/Users/haziq/Desktop/EPL0809-TEAMCOMP/
otherresults.txt", header=T, sep=",")
dat[[20]] <- other.results
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names(dat) <- c(teams[-1], "OtherResults")

## Create starting values. First get starting values from model without
## team composition for all other teams except Liverpool (and Wigan).
## Then add random standard normal values for the players abilities.
##

theta <- log(c(epl0809.coefs[-c(9,20,21)]/epl0809.coefs[20], epl0809.coefs[21]))

theta.start <- c(rnorm(length(players)), theta)
names(theta.start) <- c(players, teams[-c(1,length(teams))], "lognu")

## 50 runs of optim
##

X <- matrix(NA, 50, 38)
U <- rep(NA, 50)
print(Sys.time())
for(i in 1:50){

theta.start <- c(rnorm(length(players)), theta)
names(theta.start) <- c(players, teams[-c(1,length(teams))], "lognu")
x <- optim(theta.start, loglik.bttc, control=list(maxit=1000000))
X[i,] <- x$par
U[i] <- x$val
print(paste(i, "out of 50 completed at", Sys.time()))
print(paste("number of iterations is", x$cou[1]))
print(paste("value of likelihood function is", x$val))

}
colnames(X) <- c(players, teams[-c(1,length(teams))], "lognu")

Y <- matrix(NA, 50, 38)
Z <- list()
W <- rep(NA, 50)
print(Sys.time())
for(i in 1:50){

y <- optim(X[i,], loglik.bttc, gr=loglik.bttc.der, hessian=TRUE,
method= "L-BFGS-B", control=list(maxit=1000000))

Y[i,] <- y$par
Z[[i]] <- y$hes
W[i] <- y$val
print(paste(i, "out of 50 completed at", Sys.time()))
print(paste("number of iterations is", y$cou[1]))
print(paste("value of likelihood function is", y$val))
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}
colnames(Y) <- c(players, teams[-c(1,length(teams))], "lognu")

## Calculate values of derivative values from zero
##

loglik.bttc.der.dist <- rep(NA, 50)
for(i in 1:50) loglik.bttc.der.dist[i] <- sqrt(sum(loglik.bttc.der(Y[i,])^2))

## Calculate Euclidean distance of derivative values from zero
##

loglik.bttc.der.dist <- rep(NA, 50)
for(i in 1:50) loglik.bttc.der.dist[i] <- sqrt(sum(loglik.bttc.der(Y[i,])^2))
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E. Player abilities plots for team
composition model

Figure E.1 below shows the plots for all Liverpool players’ ability parameters φi, over
the 50 runs of optim(). It can be seen that over the 50 runs, the values of the so called
stationary points are very diverse. This led to believe that the stationary points reached
were probably not global optima.
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Figure E.1: Liverpool squad ability parameters plotted for each of the 50 runs of optim().
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Figure E.1: Liverpool squad ability parameters plotted for each of the 50 runs of optim()
(cont.).
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Figure E.1: Liverpool squad ability parameters plotted for each of the 50 runs of optim()
(cont.).
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F. Software

All analyses done on R 2.10.1 GUI 1.31 Leopard build 64-bit (5537), running on Apple
Mac OS X 10.6.3. Figures 3.1 and 4.1 created using Apple Numbers ’09 2.0.3 as a line
chart and scatter plot respectively.
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