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ABSTRACT
This paper introduces Sparse Gaussian Processes (SGP) as an efficient solution to
the computational limitations of traditional Gaussian Process Regression (GPR) in
large datasets, crucial for modeling property prices. By incorporating a smaller set
of 𝑚 ≪ 𝑛 inducing variables, SGPs reduce computational complexity from 𝑂(𝑛3)
to 𝑂(𝑛𝑚2) and minimize storage needs, making them practical for extensive real-
world applications. We apply SGPs to model property prices in Brunei, focusing on
scenario analysis to evaluate different urban planning strategies’ impacts on prop-
erty values. This approach aids in informed decision-making for sustainable urban
development, aligning with the United Nations Sustainable Development Goal 11
(SDG 11) to foster inclusive, safe, resilient, and sustainable cities. Our findings un-
derscore the potential of SGPs in spatial data analysis, providing a foundation for
policymakers to integrate economic and environmental considerations into urban
planning.
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1. Introduction

Sustainable urban planning plays a crucial role in shaping the global urban population
by focusing on developing and managing cities in a way that encourages sustainability.
With over half of the world’s population already living in urban areas, this number is
expected to rise to 70 percent by 2050. The United Nations SDG 11 aims to create
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inclusive, safe, resilient, and sustainable cities and human settlements. This objective
addresses various aspects of urban life and planning with the goal of enhancing the
overall quality of life for city dwellers. Key focus areas include ensuring adequate hous-
ing and essential services, establishing sustainable transportation systems, preserving
cultural and natural heritage, minimizing the negative environmental impact of cities,
facilitating access to green spaces and public areas, as well as bolstering urban resilience
against disasters (United Nations, 2018).

In order to effectively achieve the goals of sustainable urban planning, accurate and com-
prehensive models for analyzing property price evaluation are necessary. These models
can inform urban planning decisions by predicting and assessing property prices, and
guide in the shaping of inclusive and sustainable urban areas. They play a critical role
in identifying affordable housing options, strategizing efficient transportation networks,
distributing resources for infrastructure development, and promoting fair access to vital
services (Dede, 2016) — all aligned with the UN SDG11 objectives. Statistical models
are powerful tools in this regard, by providing insights into factors that influence prop-
erty prices including location, amenities, infrastructure, and socioeconomic elements.

Scenario analysis stands as a valuable tool for evaluating the impact of different urban
planning strategies by providing a structured framework to analyse and visualise differ-
ent planning approaches, helping to inform and guide towards more sustainable urban
development outcomes (Kropp & Lein, 2013). Through a combination of qualitative
narratives and quantitative data modeling, scenario analysis facilitates better decision-
making by bridging the gap between intricate urban dynamics and strategic planning.
It empowers planners to consider the future thoroughly when developing sustainable
environments. Here are three examples of how data modelling can be used to support
sustainable urban planning:

1) Urban Planning and Development Efficiency: Data models could be applied
to analyse how urban planning decisions affect housing prices over time and space.
An example of this is the work by Johnson (2007). By modelling the spatial
distribution and temporal changes in house prices, insight can be provided into
which urban development strategies are most effective at promoting affordable
housing. This could support policy-making in urban development that aims for
equitable growth and sustainability.

2) Assessment of Infrastructure Impact: Study the impact of infrastructure
developments (like new transportation lines, parks, or public facilities) on local
real estate values using data models. This application could help city planners
understand the economic effects of their infrastructure projects, guiding them
in making investments that lead to more sustainable urban environments and
enhanced community welfare. See for instance, Shrestha et al. (2022) or Schoeman
(2019).

3) Environmental Sustainability Analysis: Data models could be used to ex-
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plore the relationship between house prices and environmental factors, such as
proximity to green spaces, pollution levels, and environmental risk factors (like
flooding). This analysis can help identify how environmental sustainability is val-
ued in urban real estate and guide the planning of greener, more resilient urban
areas that align with SDG11’s objectives. Recent strides in this area has been
made by Mironiuc et al. (2021) and Chuweni et al. (2024).

Many different data modelling approaches exist in machine learning and statistical
modelling, but Gaussian Process (GPs) have emerged as a non-parametric approach
to regression tasks, where it is widely used to make uncertainty predictions for unseen
input locations. Unlike their parametric counterparts such as the widely used class of
linear regression models, non-parametric models offer unparalleled flexibility by mak-
ing fewer assumptions about the data’s underlying structure, which often results in
enhanced predictive power for complex datasets. The ease-of-use of GPs, as well as its
adaptability to wide-ranging datasets, are what makes it practical for various domains.
The techniques itself does not limit itself for the use of statisticians only, but it is also
well known among other professions where it is important to define uncertainty pre-
dictions, such as finance, health care, and geology1. Despite its apparent advantages,
GP regression faces difficulties due to its unfavorable computational demands for larger
data sets. This includes challenges related to time complexity and storage. As a result,
there have been numerous attempts to find more efficient methods that provide an ap-
proximation while still preserving the underlying structure of the full exact GP solution
as best as possible.

In recent years, there have been many attempts to address this limitation with the use
of a method called the sparse approximation, where ‘sparse’ refers to the smaller subset
of the data set. The authors of Rasmussen & Williams (2006) tackled this challenge
using the Nyström method, which uses a low-rank approximation technique on the
𝑛 × 𝑛 kernel matrix. This involves selecting a representative sample of 𝑚 points from
the dataset (where 𝑚 ≪ 𝑛) to construct an approximation. The full kernel matrix is
then projected onto the subspace formed by the kernel matrix of this subset in order to
approximate it, significantly reducing computational complexity.

Significant strides in Sparse Gaussian Process (GP) methods have enhanced the scal-
ability of GPs for handling large datasets and mostly build off the Nyström approxi-
mation method. Csató (2002) advanced an iterative sparse approximation method that
incrementally selects the most informative basis functions, laying the foundation for
subsequent developments in active learning strategies within the GP framework. Build-
ing on the concept of data summarization, Snelson & Ghahramani (2005) introduced the
use of pseudo-inputs, optimizing these alongside the model’s hyperparameters to reduce
computational complexity by focusing only on a subset of training data. Further refin-

1Known as kriging in the field of geostatistics.
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ing the efficiency and accuracy of these methods, Titsias (2009) proposed a variational
approach that optimizes the lower bound of the marginal likelihood with respect to
inducing variables, enhancing the approximation of the GP posterior. Extending these
methodologies to even larger datasets, Hensman et al. (2013). adapted the variational
framework to incorporate stochastic variational inference, allowing GPs to be applied to
datasets with millions of points and supporting complex models with non-Gaussian like-
lihoods and latent variables. Significantly, the methodologies developed by Hensman et
al. (2013) are accessible to the wider community, as they have been implemented in the
GPy library for Python, facilitating their use in practical applications. These cumulative
efforts demonstrate a progression from foundational sparse techniques to sophisticated
large-scale applications in the GP domain.

This paper aims to succinctly introduce the concept of Sparse Gaussian Processes from
a soft mathematical standpoint, which include visualisation of the eveolution of the
optimisation process using Python and R software, hopefully being instructive to the
novice reader. As an application piece, we incorporate the principles of sustainable
urban planning into property price modelling in Brunei Darussalam using sparse Gaus-
sian Processes. The main interest is to evaluate the impact of different urban planning
strategies on property prices, focusing on scenario analysis to inform sustainable urban
development. This is inline with the broader objectives of creating inclusive, safe, and
sustainable cities as outlined in the UN SDG 11.

2. Gaussian processes

For real-valued observations y = (𝑦1, … , 𝑦𝑛)⊤ and corresponding multivariate inputs
𝑥1, … , 𝑥𝑛, where each 𝑥𝑖 belongs to a covariate set 𝒳, consider the regression problem
represented by

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖, 𝑖 = 1, … , 𝑛. (1)

The 𝜖𝑖 terms are independent and identically distributed (iid) Gaussian noise terms with
zero mean and variance 𝜎2. Here, 𝑓 is a regression function that we aim to estimate in
order to make predictions and conduct inferences.

As the name implies, a Gaussian process (GP) essentially entails defining a Gaussian
distribution over the random vector f = (𝑓(𝑥1), … , 𝑓(𝑥𝑛))⊤ with mean m and covari-
ance matrix K. We may write f ∣ 𝒳 ∼ 𝒩(m, K), and refer to the probability density
function of f as 𝑝(f). The defining feature of the GP regression is the specification of a
symmetric and positive-definite function 𝑘 ∶ 𝒳 × 𝒳 → ℝ known as the kernel function
that determines the covariance K𝑖𝑗 between the function values at any two input loca-
tions 𝑥𝑖 and 𝑥𝑗. Hence the GP is fully specified by the mean and kernel function, where
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conventionally the mean is set to zero a priori.

In many branches of mathematics, the kernel function is often viewed as a measure of
similarity between the input locations. In the context of GP regression, similarity be-
tween input points 𝑥𝑖 and 𝑥𝑗 is reflected in the covariance K𝑖𝑗, which in turn influences
the similarity of the outputs 𝑓(𝑥𝑖) and 𝑓(𝑥𝑗). Different types of kernel functions can be
used to affect different notions of similarity, and the choice of kernel is often crucial to
the performance of the GP regression model. Examples of popular kernels include the
squared exponential kernel and the Matérn kernel, as defined in Table 1.
The squared exponential kernel yields smoother and more continuous outputs, embody-
ing an assumption of high regularity, whereas the Matérn kernel, with its additional
flexibility in the smoothness parameter, is adept at modelling more abrupt and irregu-
lar changes in the data. The user must choose the kernel function that best captures the
underlying structure of the data, and this choice is often guided by domain knowledge
and the nature of the data.

Table 1. Explicit definitions for two popular kernels in GPR. For the Matérn kernel, 𝐾𝜈
is the modified Bessel function of the second kind, and Γ(⋅) is the gamma function.

Name 𝑘(𝑥, 𝑥′) Hyperparameters

Squared
exponential

𝜆 exp (− ‖𝑥−𝑥′‖2

2ℓ2 ) ℓ lengthscale; 𝜆
amplitude

Matérn 𝜆21−𝜈
Γ(𝜈) (

√
2𝜈 𝑑
ℓ )

𝜈
𝐾𝜈 (

√
2𝜈 𝑑
ℓ ) 𝜈 smoothness

parameter; ℓ
lengthscale; 𝜆 amplitude

The GP on f cab be thought of as a prior distribution over the space of regression
functions in a Bayesian sense. Together with Equation 1, we may write

y ∼ 𝒩(m, K + 𝜎2I), (2)

specifying a Gaussian likelihood for the observed data vector y. Hence, the GP is a con-
jugate prior for the regression function 𝑓 in the presence of Gaussian noise. Specifically,
we have that 𝑓 ∣ y ∼ 𝒩(�̂�, �̂�), where the mean and covariance functions are given by

�̂�(𝑥) = K(𝑥)⊤(K + 𝜎2I)−1y,
�̂�(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥′) − K(𝑥)⊤(K + 𝜎2I)−1K(𝑥′),

for any 𝑥, 𝑥′ ∈ 𝒳, where K(𝑥) = (𝑘(𝑥1, 𝑥), … , 𝑘(𝑥𝑛, 𝑥))⊤. This is a well known result in
the GP literature – see e.g. Ishida & Bergsma (2023) for a detailed derivation. Clearly,
the posterior distribution applies to any input 𝑥 from the domain set 𝒳, including new
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input locations not present in the training data, allowing the GP to make predictions at
arbitrary locations. Additionally, the posterior distribution is Gaussian, which facilitates
the computation of credible intervals and point estimates for the regression function.

The kernels used may involve hyperparameters which may either be chosen by the user,
or estimated from the data. In the latter case, the hyperparameters are typically esti-
mated by maximizing the likelihood function of the data after marginalising out the GP
prior given by Equation 2. Methods such as conjugate gradients are typically employed,
with a Choleski decomposition on the kernel matrix K to facilitate the computations
(Rasmussen & Williams, 2006). Alternatively, quasi Newton methods such as L-BFGS-
B may be used to optimise the hyperparameters, which are often more efficient for large
data sets. Jamil & Bergsma (2019) employed an EM algorithm for a certain class of
Gaussian priors known as I-priors.

Whether the hyperparameters are estimated or chosen by the user, calculation of the
GP posterior involves the inversion of an 𝑛 × 𝑛 kernel matrix. For very large data sets,
this inversion can be computationally expensive both in time and storage, scaling to to
the order of 𝑂(𝑛3) and 𝑂(𝑛2) respectively, prohibiting the use GP regression. In the
next section, we discuss the use of sparse GPs as a solution to this problem.

3. Sparse Gaussian processes

Sparse Gaussian processes (SGPs) are a class of methods that aim to reduce the com-
putational complexity of GP regression by approximating the full GP with a smaller
set of inducing points. Suppose we have a set of 𝑚 inducing points Z = {𝑧1, … , 𝑧𝑚},
where 𝑚 ≪ 𝑛 and each 𝑧𝑖 ∈ 𝒳 but not necessarily in the original training set. Denote
by u = (𝑢1, … , 𝑢𝑚)⊤ the latent function values at the inducing points, i.e. 𝑢𝑖 = 𝑓(𝑧𝑖)
for each 𝑖 = 1, … , 𝑚. A priori, assume a GP prior over both f and u:

( f
u

) ∼ 𝒩 (0, ( K K⊤
𝑢𝑓

K𝑢𝑓 K𝑢
))

The quantities K𝑢𝑓 and K𝑢 are the cross-covariance matrix between the function values
at the inducing points and the original data points, and the covariance matrix of the
function values at the inducing points respectively–both computed using the choice of
the kernel function 𝑘(𝑥, 𝑥′). Note that we have used, for simplicity, a zero-valued mean
function for the prior. Using standard results for the multivariate normal distribution,
the conditional distribution of f given u is

f ∣ u ∼ 𝒩(K𝑢𝑓K−1
𝑢 u, K − Q),
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where Q = K𝑢𝑓K−1
𝑢 K⊤

𝑢𝑓 represents the reduction in the variance of f due to the infor-
mation from the inducing points u. Incidentally it is also referred to as the Nyström
approximation of the kernel matrix K.

Ultimately the goal would be to compute the joint posterior 𝑝(f, u ∣ y), but evidently
this is intractable for large 𝑛, the same problem encountered in the previous section. To
approximate the intractable true posterior, a variational distribution is introduced:

𝑞(f, u) = 𝑝(f ∣ u)𝑞(u),

where 𝑞(u) is a variational approximation to the true posterior of the inducing variables,
typically chosen to be a Gaussian distribution with its own variational parameters.
Included in the variational parameters are the locations of the inducing points, since
these highly determine the quality of the approximation. The variational parameters are
then optimised to minimise the Kullback-Leibler (KL) divergence from the variational
distribution to the true posterior.

As per Titsias (2009), the minimisation of this KL divergence is equivalent to maximising
the so-called evidence lower bound (ELBO)

ℒ(Z) = log 𝜙(y ∣ 0, Q + 𝜎2I) − 1
2𝜎2 tr (K − Q)

where 𝜙(y ∣ 𝜇, Σ) is the density function for y ∼ 𝒩(𝜇, Σ), and Q is the Nyström
approximation as previously defined. The optimal variational distribution, call this ̃𝑞, is
found to be a multivariate gaussian distribution over u with mean and covariance given
by

𝜇𝑢 = 𝜎−2K𝑢ΨK𝑢𝑓y
Σ𝑢 = K𝑢ΨK𝑢

Ψ = (K𝑢 + 𝜎−2K𝑢𝑓K⊤
𝑢𝑓)−1

Evaluation of ̃𝑞 requires hyperparameter values for the kernel, which can be optimised
simultaneously with the variational parameters. The posterior distribution 𝑓 ∣ y can
then be obtained via

𝑝(𝑓 ∣ y) = ∫ 𝑝(𝑓, u ∣ y)du

≈ ∫ 𝑝(𝑓 ∣ u) ̃𝑞(u)du

where the integral marginalises the inducing variables u as a replacement for the true
posterior distribution 𝑝(u ∣ y). This can be computed analytically as being Gaussian.
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Specifically, 𝑓 ≈ y ∼ 𝒩(�̃�, �̃�), where the mean and covariance functions are given by

�̃�(𝑥) = 𝜎−2K𝑚(𝑥)⊤ΨK𝑢𝑓y,
�̃�(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥′) − K𝑚(𝑥)⊤(K−1

𝑢 − Ψ)K𝑚(𝑥′).

for any 𝑥, 𝑥′ ∈ 𝒳, with K𝑚(𝑥) = (𝑘(𝑧1, 𝑥), … , 𝑘(𝑧𝑚, 𝑥))⊤ and Ψ as defined above. The
calculation of this approximate posterior avoids the need to invert any 𝑛 × 𝑛 matrix,
reducing the computational time complexity from 𝑂(𝑛3) to 𝑂(𝑛𝑚2).
To illustrate the SGP method, consider obtaining 𝑛 = 1000 noisy observations from the
one-dimensional function taking one-dimension input 𝑥 ∈ ℝ.

𝑓(𝑥) = sin(3𝜋𝑥) + 0.3 cos(9𝜋𝑥) + 0.5 sin(7𝜋𝑥).

The variance 𝜎2 of the noise is set to 0.2. This example was taken from documenta-
tion of GPflow (Matthews et al., 2017 – section on Stochastic Variational Inference
for scalability with SVGP). A smooth RBF kernel is used to model the function, with
𝑚 = 50 inducing points. The lengthscale and variance parameters of the kernel require
optimising, along with the values of the inducing points 𝑧1, … , 𝑧𝑚. Good initial values
will indeed help the optimisation process, but for illustration here we use 𝑚 = 50 values
equally spaced between -0.4 and 0.4. Figure 1 shows the evolution of the optimisation
process, particularly the impact of the inducing points on the predicted regression func-
tion. At the start, the choice of equally spaced inducing points clearly gives a poor
approximation to the true function. As the optimisation progresses, the inducing points
are adjusted to better capture the function, leading to a more accurate prediction. The
code for this example is made available in the supplementary material.

4. Scenario analysis in urban planning

We showcase an application of using sparse GPs for scenario analysis in urban planning,
with the running theme of sustainable development for cities and communities. The
analysis focuses on modelling property prices in Brunei Darussalam, which is a small
country in Southeast Asia located on the island of Borneo. Residential property data
sourced from property listings from various real estate agents are available, including
price, areal location, built up area (in square feet), the type of property (detached, semi-
detached, terrace, or apartment) and date of listing (in quarter-years). The size of the
dataset is 𝑛 = 11, 351 and it spans a period of 18 years, from 2006 to 2023. We note that
missing values exist in the dataset, which were treated with a simple spatio-temporal
mean imputation – see Jamil (2024) for details. The aim is to build a sparse GP model
that can predict property prices sufficiently well across different regions in Brunei.
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Figure 1. Evolution of the optimisation process and its impact on the predicted regres-
sion function.

The report on the Convention on Biological Diversity in Brunei (Forestry Dept., 2014)
highlights the nation’s commitment to preserving biodiversity through the establishment
and maintenance of forest reserves. Specific areas have been officially designated as forest
reserves, outlining both currently protected areas and plans for future gazettement to
enhance environmental conservation efforts.

It is crucial for city planners to use scenario analysis to assess how various urban de-
velopment strategies might influence property prices in Brunei. These scenarios focus
on changes to forest reserve conservation efforts and their effects on nearby property
values.

• Scenario 0 (S0): No changes are made to forest reserves, including the proposed
gazetted areas, maintaining the current forest reserve coverage at 41%.

• Scenario 1 (S1): An increase in protected areas, with proposed zones being
designated as forest reserves, raising the total protected area from 41% to 57%.

• Scenario 2 (S2): A reconfiguration of forest reserve locations while keeping the
total protected area constant at 41%.

• Scenario 3 (S3): A reduction in protected areas from 41% to 34%, allowing for
potential development within these previously conserved zones.

In order to utilise the sparse GP model for scenario analysis, we first describe some fea-
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Figure 2. Map of Brunei Darussalam showing the location of forest reserves. Sample
locations of 1,000 properties are depicted, showing a high concentration of population
along the coastal areas and as well in the vicinity of the capital city of Bandar Seri
Begawan (indicated by the red point).
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ture engineering steps that are necessary to prepare the data for the model. Concerning
the spatial location of the data points, these are geocoded with an areal location in
Brunei (village or kampong level resolution). Since these spatial areas are not conducive
for direct use in the model, we obtained a random sample from this area and used the
X and Y coordinates as an approximate location of the house. With several observa-
tions relating to the same spatial area, this would likely have the same effect as using
the centroid of the spatial area, with the added benefit of interpolating over the entire
spatial area.

Next, the categorical variable property type is hot-encoded to create dummy variables
for each property type. The listing date, in the format of “year-quarter” is converted
to numeric format by assigning a unique number to each quarter-year in running order.
This, together with other continuous variables (X, Y, built-up area), are standardised
to have zero mean and unit variance. The output variable price is log-transformed to
ensure that the model is not overly sensitive to extreme values, and is quite common
practice for these types of analyses.

As the interest is in determining changes to property prices under different conservation
scenarios, we calculate a conservation proximity variable, which is simply the distance
from each property to the nearest point of the conservation area boundary in the current
scenario. This feature will likely play a crucial role in the model.

Considering the different kinds of variables in the dataset, we use a combination of
kernels to capture different aspects of the data. In particular, the squared exponential
(or radial basis) kernel with differing lengthscales are used for the continuous variables
X, Y, built up area and conservation proximity. The Matérn kernel with 𝜈 = 5/2 was
applied to the time variable. In theory it can adapt better to irregularities in data, which
might be suitable for economic or housing data that can experience sudden changes due
to external factors. To account for the categorical variable, we use the coregionalize
kernel designed to handle multiple outputs or grouped data by modelling correlations
between these outputs or groups.

The dataset was split into training and validation sets, with 80% of the data used for
training and the remaining 20% for validation. The GPy library in Python was used to
build the sparse GP model, with the inducing points set to 1000. The model was trained
until convergence, which was assessed by the non-change in the marginal likelihood. The
mean squared error (MSE) for the training sample was found to be 0.0624, while the
MSE for the test sample was 0.0585.

The trained model was then used to predict property prices under the different sce-
narios. In order to achieve this, the map of Brunei was gridded into cells of size 0.01
degrees, which is approximately 1 km by 1 km. Cells that intersected with the Brunei
boundary were retained, resulting in 5,210 cells. The centroid of these cells were used
as the location to be predicted. In addition, the property characteristics were set to
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Figure 3. An illustration of the feature engineering process outlining variables used in
the GP regression.

Table 2. Average relative weighted change in property prices under different conservation
scenarios for each district in Brunei.

District Average price under S0 S1 S2 S3
Belait $340,000 -14.72% -8.65% -8.65%
Tutong $229,000 0.00% -0.55% -0.55%
Brunei Muara $326,000 0.00% -19.08% -19.08%
Temburong $224,000 0.37% -0.09% 19.48%

an average detached house’s characteristics, roughly 2,500 square feet in built-up area.
The conservation proximity was then calculated for each data point. The time period
of prediction was set to the latest date available (2023 Q3).

Using the described prediction data set, we obtain predicted prices under Scenarios S0
to S3. The main interest will be changes to property prices so therefore the absolute
predicted values themselves, and therefore the prediction inputs, are not too important.
Specifically, the relative change (in percent) to status quo scenario S0 was calculated
for each of S1, S2, and S3. The results are shown as a heatmap in Figure 4. The average
change for each of Brunei’s four districts, weighted by household density from the 2021
census data, is also calculated and tabulated in Table 2.

Under S1, where the conservation area is increased, the property prices are predicted
to be stable in most areas, but a decrease of about 15% is seen in the Belait area. An
increase in conservation area in the district indeed restricts the supply of land available
for residential construction, thereby decreasing the potential for capitalizing on land
value through development. As a result, property prices are expected to decrease (Hardie
et al., 2007). Under S2, where the conservation area is reconfigured, the price surface of
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Figure 4. Heatmap of relative changes (S0 baseline) in property prices under different
conservation scenarios. Green areas indicate status-quo conservation areas. Yellow areas
indicate addition of conservation areas, while gray areas are removed areas.
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Brunei experiences either an increase or a decrease depending on the location. Similar
to S1, the Belait populous region experiences a decrease, however the Lumut area sees
an increase. The latter seems to be a response to the removal of the nearby Anduki
forest reserve. A similar effect, though smaller, is seen in the Tutong region due to the
removal of the Andulau forest reserve. More prominently, the removal of the Berakas
forest reserve in the Brunei-Muara region leads to a negative effect averaging -19% on
property prices, possibly indicating the importance of having conservation land in a very
densely populated region. A similar effect was seen in the San Francisco Bay area (Farja,
2017). The effects of S3, i.e. the reduction in conservation area follows a similar pattern
to S2, but the magnitude of change is more pronounced. This is especially apparent in
the Temburong region, where property prices are predicted to increase by as much as
20% on average. Reduction in conservation areas can spur property price increases by
making more land available for development and infrastructure improvements, which
support the burgeoning eco-tourism sector in Temburong. Indeed, research has suggested
that green-infrastructure development can lead to increased property prices (Fauk &
Schneider, 2023; Hsu & Chao, 2022). With investment and boosts to local economies,
properties are more valued through increased demand and speculative interest.

5. Conclusion

To conclude, Gaussian Processes have been demonstrated to be an invaluable and pow-
erful tool for spatial data analysis, offering the flexibility and user-friendliness required
for complex supervised learning tasks. Their application in urban planning is partic-
ularly promising, as they allow for the incorporation of economic considerations into
decision-making processes, leading to more informed and sound strategies for urban
development.

Despite the notable computational complexities associated with traditional GPs, ad-
vancements in technology have given rise to the sparse Gaussian Process method, which
mitigates these challenges by optimizing model complexity and computational resources.
The sparse GP methodology stands as a testament to the evolution and adaptability of
statistical modelling tools in addressing data-intensive problems.

The case study presented in this paper, albeit simplistic, serves as a promising proof
of concept for the utilization of sparse Gaussian Processes in scenario analysis for ur-
ban planning. It effectively demonstrates the potential of GP models in property price
estimation and their broader implications for informed urban development. To unlock
the full predictive capabilities of these models and facilitate even more precise insights,
the incorporation of a richer dataset is essential. This dataset should include a diverse
array of features such as property quality indicators – age of the property, land size, and
conditions – alongside neighbourhood and locational attributes like proximity to ameni-
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ties, road networks, and places of attraction. As we continue to refine these models by
integrating these comprehensive features, Gaussian Processes are poised to significantly
influence the development of sustainable and economically viable urban environments,
aligning with the objectives of Sustainable Development Goal 11.
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