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Binary andMultinomial Regressionusing Fisher InformationCovariance Kernels (I-priors)

Introduction
Consider the regression model for i = 1, . . . , n:

yi = α + f (xi) + ϵi
(ϵ1, . . . , ϵn)

⊤ ∼ Nn(0,Ψ
−1)

(Ώ)
where yi ∈ R, x ∈ X , f ∈ F and α ∈ R is an intercept.Let F be a reproducing kernel Hilbert space (RKHS)with kernel hλ : X × X → R. The Fisher informationfor f evaluated at x and x′ is

I
(

f (x), f (x′)
)

=

n
∑

k=1

n
∑

l=1

Ψk,lhλ(x, xk)hλ(x
′, xl). (ΐ)

The I-prior
The entropy maximising prior distribution for f ,subject to identifiability constraints, is

f =
(

f (x1), . . . , f (xn)
)⊤

∼ Nn

(

f0, I[f ]
)

.

Equivalently, f (x) = f0(x) +
∑n

i=1 hλ(x, xi)wi, with
(w1, . . . , wn)

⊤ ∼ Nn(0,Ψ).

4f interest are
• the posterior distribution for the regressionfunction

p(f |y) =
p(y|f)p(f)

∫

p(y|f)p(f) dy
; and

• the posterior predictive distribution for new datapoints
p(ynew|y) =

∫

p(ynew|fnew,y)p(fnew|y) dfnew.
Model parameters (error precision Ψ, RKHS scale pa-rameters λ, and any other kernel parameters) mayneed to be estimated.
A Unified Regression Framework

• Multiple linear regression (canonical RKHS)• Smoothing models (fBm RKHS)• Multilevel regression (AN4VA RKHS: canonical &Pearson)
f (x

(j)
i ) = f1(j) + f2(x

(j)
i ) + f12(x

(j)
i , j)

• Longitudinal modelling (AN4VA RKHS: fBm &Pearson)
f (xi, ti) = f1(ti) + f2(xi) + f12(xi, ti)• Functional covariates (X a Hilbert-Sobolev space)
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Figure Ώ: (L-R) Sample paths from the canonical (linear), fractional Brownian motion (fBm), and Pearson RKHS. The (reproducing) ker-
nels corresponding to each RKHS are hλ(x, x

′) = λ⟨x, x′⟩X (linear), hλ(x, x
′) = −λ

2

(

∥x − x′∥2γX − ∥x∥2γX − ∥x′∥2γX
) (fBm), and hλ(x, x

′) =

λ
(

δxx′/P[X = x]− 1
) (Pearson).

Categorical Responses
When each yi ∈ {1, . . . ,m}, normality assumptionsare violated. Model instead yi = argmaxk y

∗
ik , where

y∗ij = αj + fj(xi) + ϵij

(ϵi1, . . . , ϵim)
⊤ ∼ Nm(0,Σ)

(Α)
withCov(ϵij, ϵkj) = 0, for all i ̸= k, j = 1, . . . ,m. In otherwords, Ψ = In in (Ώ) and (ΐ). The I-prior is

fj =
(

fj(x1), . . . , fj(xn)
)⊤

∼ Nn

(

f0j,Σ
−1
jj · I[f ]

)

Cov(fj, fk) = Σ−1
jk · I[f ].

Class probabilities pij are obtained using a conicallytruncatedm-variate normal density
pij =

∫

{y∗ij>y∗ik | k ̸=j}

Nm

(

y∗
i | f(xi),Σ

)

dy∗
i =: g−1

j

(

f(xi)
)

.

where we had defined f(xi) =
(

f1(xi), . . . , fm(xi)
)⊤.Now, the marginal, on which the posterior depends,

p(y) =

∫

∏

i,j

{

g−1
j

(

f(xi)
)

}[yi=j]

·Nnm

(

f | f0,Σ⊗ I[f ]
)

df ,

cannot be found in closed form. By working in a fullyBayesian setting, we append model parameters andemploy a variational approximation.
Spatio-Temporal Modelling of BTBa

Determine the existence of spatial segregation of thedifferent spoligotypes of bovine tuberculosis (BTB)in Cornwall, UK, and whether the spatial distributionhad changed over time.
Ώ Constant model (constant RKHS)

pij = g−1
j

(

αk

)m

k=1

ΐ Spatial segregation (fBm RKHS)
pij = g−1

j

(

αk + f1k(xi)
)m

k=1

Α Spatio-temporal segregation (AN4VA RKHS)
pij = g−1

j

(

αk + f1k(xi) + f2k(ti) + f12k(xi, ti)
)m

k=1

Evidence Lower Bound (ELB4) values for the threemodels are -ΏΏΗΕ.Β, -ΔΔΓ.Α, and -ΔΓΔ.ΐ respectively.

Detecting Cardiac Arrhythmiab
Predict whether or not patients suffer from a car-diac disease based on various patient profiles suchas age, height, weight and a myriad of electrocardio-gram (ECG) readings (p = 271, n = 451).
Table Ώ: Mean out-of-sample misclassification rates and stan-
dard errors for ΏΎΎ runs of various training (s) and test (451− s)
sizes for the cardiac arrhythmia binary classification task.

Misclassification rate (%)Method s = 50 s = 100 s = 200

I-probit (linear) ΑΒ.Γ (Ύ.Β) ΑΏ.Β (Ύ.Β) ΐΗ.Ε (Ύ.Β)I-probit (fBm) ΑΒ.Ε (Ύ.Δ) ΐΕ.Α (Ύ.Α) ΐΒ.Γ (Ύ.Α)
GP (Gaussian) ΑΕ.Α (Ύ.Β) ΑΑ.Ζ (Ύ.Β) ΐΗ.Α (Ύ.Β)L-Ώ logistic ΑΒ.Η (Ύ.Β) ΑΎ.Γ (Ύ.Α) ΐΔ.Ώ (Ύ.Α)
SVM (linear) ΑΔ.ΐ (Ύ.Γ) ΑΓ.Δ (Ύ.Β) ΑΓ.ΐ (Ύ.Β)SVM (Gaussian) ΒΖ.Β (Ύ.Γ) ΒΕ.ΐ (Ύ.Γ) ΒΔ.Η (Ύ.Β)
RF ΑΏ.Ε (Ύ.Β) ΐΔ.Ε (Ύ.Α) ΐΐ.Β (Ύ.Α)
k-NN ΒΎ.Δ (Ύ.Α) ΑΖ.Η (Ύ.Α) ΑΓ.Ζ (Ύ.Β)

Conclusions
• Simple estimation of various categoricalmodels:• Choice models (with or without IIA);• Random-effects models;• Binary and multiclass classification.• Inference is straightforward (e.g. model com-parison or (transformed) credibility intervals).• 4ften gives better predictions.
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Figure ΐ: Predicted probability surfaces for BTB contraction in Cornwall for the four largest spoligotypes of the bacteriumMycobacterium bovis over the entire time period ΏΗΖΗ–ΐΎΎΐ using Model ΐ.
Data sources: aPeter Diggle, Pingping Zheng, and Peter Durr. Nonparametric estimation of spatial segregation in a multivariate point process: bovine tuberculosis in Cornwall, UK. J. Royal Stat. Soc. Series
C (Appl. Statist.), ΓΒ(Α):ΔΒΓ–ΔΓΖ, ΐΎΎΓ. bTimothy I Cannings and Richard J Samworth. Random projection ensemble classification. J. Royal Stat. Soc. Series B (Stat. Methodol.), ΕΗ(Β):ΗΓΗ–ΏΎΑΓ, ΐΎΏΕ.

http://phd.haziqj.ml

