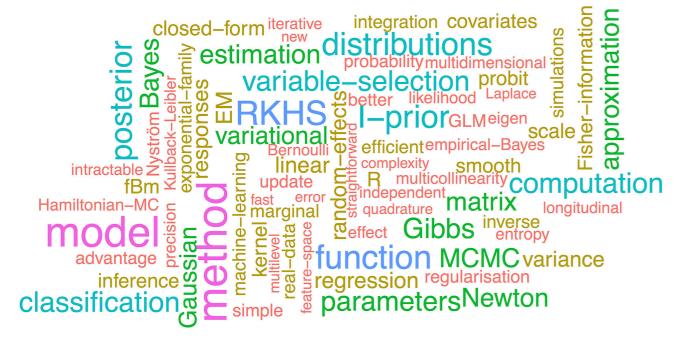
Haziq Jamil & Wicher Bergsma

Department of Statistics London School of Economics and **Political Science**

http://phd.haziqj.ml

Binary and Multinomial Regression using Fisher Information **Covariance Kernels (I-priors)**



Introduction

Consider the regression model for $i = 1, \ldots, n$:

$$y_i = \alpha + f(x_i) + \epsilon_i$$

$$(\epsilon_1, \dots, \epsilon_n)^\top \sim \mathcal{N}_n(0, \Psi^{-1})$$
(1)

where $y_i \in \mathbb{R}$, $x \in \mathcal{X}$, $f \in \mathcal{F}$ and $\alpha \in \mathbb{R}$ is an intercept. Let \mathcal{F} be a reproducing kernel Hilbert space (RKHS) with kernel $h_{\lambda} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. The Fisher information for f evaluated at x and x' is

$$\mathcal{I}(f(x), f(x')) = \sum_{k=1}^{n} \sum_{l=1}^{n} \Psi_{k,l} h_{\lambda}(x, x_k) h_{\lambda}(x', x_l).$$
(2)

The I-prior

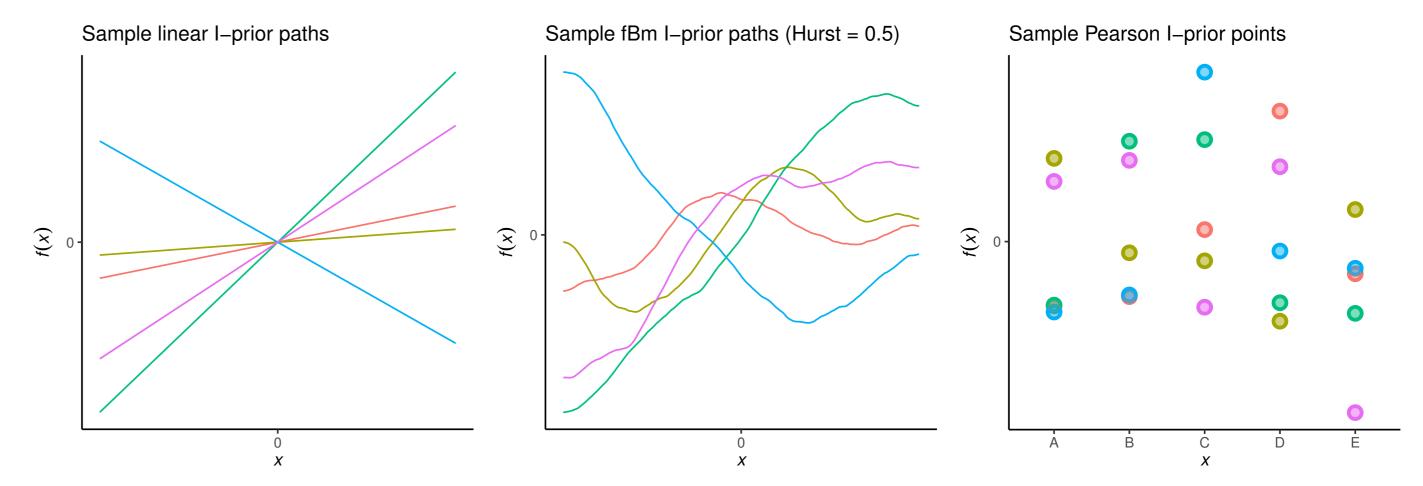


Figure 1: (L-R) Sample paths from the canonical (linear), fractional Brownian motion (fBm), and Pearson RKHS. The (reproducing) kernels corresponding to each RKHS are $h_{\lambda}(x,x') = \lambda \langle x,x' \rangle_{\mathcal{X}}$ (linear), $h_{\lambda}(x,x') = -\frac{\lambda}{2} (\|x-x'\|_{\mathcal{X}}^{2\gamma} - \|x\|_{\mathcal{X}}^{2\gamma} - \|x'\|_{\mathcal{X}}^{2\gamma})$ (fBm), and $h_{\lambda}(x,x') = -\frac{\lambda}{2} (\|x-x'\|_{\mathcal{X}}^{2\gamma} - \|x\|_{\mathcal{X}}^{2\gamma} - \|x\|_{\mathcal{X}}^{2\gamma})$ $\lambda (\delta_{xx'}/P[X=x]-1)$ (Pearson).

(3)

Categorical Responses

When each $y_i \in \{1, \ldots, m\}$, normality assumptions are violated. Model instead $y_i = \arg \max_k y_{ik}^*$, where

$$y_{ij}^* = \alpha_j + f_j(x_i) + \epsilon_{ij}$$

$$z_{i1}, \dots, \epsilon_{im})^\top \sim \mathcal{N}_m(0, \Sigma)$$

with $Cov(\epsilon_{ij}, \epsilon_{kj}) = 0$, for all $i \neq k, j = 1, ..., m$. In other words, $\Psi = I_n$ in (1) and (2). The I-prior is

Detecting Cardiac Arrhythmia^b

Predict whether or not patients suffer from a cardiac disease based on various patient profiles such as age, height, weight and a myriad of electrocardiogram (ECG) readings (p = 271, n = 451).

Table 1: Mean out-of-sample misclassification rates and stan-

The entropy maximising prior distribution for f, subject to identifiability constraints, is

$$\mathbf{f} = \left(f(x_1), \dots, f(x_n)\right)^\top \sim \mathrm{N}_n\left(\mathbf{f}_0, \mathcal{I}[f]\right).$$

Equivalently, $f(x) = f_0(x) + \sum_{i=1}^n h_\lambda(x, x_i)w_i$, with
 $(w_1, \dots, w_n)^\top \sim \mathrm{N}_n(0, \Psi).$

Of interest are

• the posterior distribution for the regression function

 $p(\mathbf{f}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f})}{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f})\,\mathrm{d}\mathbf{y}}; \text{and}$

• the posterior predictive distribution for new data points

 $p(y_{\text{new}}|\mathbf{y}) = \int p(y_{\text{new}}|f_{\text{new}}, \mathbf{y}) p(f_{\text{new}}|\mathbf{y}) \, \mathrm{d}f_{\text{new}}.$

Model parameters (error precision Ψ , RKHS scale parameters λ_{i} , and any other kernel parameters) may need to be estimated.

A Unified Regression Framework

- Multiple linear regression (canonical RKHS)
- Smoothing models (fBm RKHS)
- Multilevel regression (ANOVA RKHS: canonical & Pearson)

 $f(x_i^{(j)}) = f_1(j) + f_2(x_i^{(j)}) + f_{12}(x_i^{(j)}, j)$

• Longitudinal modelling (ANOVA RKHS: fBm & Pearson)

 $f(x_i, t_i) = f_1(t_i) + f_2(x_i) + f_{12}(x_i, t_i)$

$$\mathbf{f}_{j} = \left(f_{j}(x_{1}), \dots, f_{j}(x_{n})\right)^{\top} \sim \mathcal{N}_{n}\left(\mathbf{f}_{0j}, \Sigma_{jj}^{-1} \cdot \mathcal{I}[f]\right)$$
$$\operatorname{Cov}(\mathbf{f}_{j}, \mathbf{f}_{k}) = \Sigma_{jk}^{-1} \cdot \mathcal{I}[f].$$

Class probabilities p_{ij} are obtained using a conically *truncated m-variate normal* density

$$p_{ij} = \int_{\{y_{ij}^* > y_{ik}^* \mid k \neq j\}} N_m \left(\mathbf{y}_i^* \mid \mathbf{f}(x_i), \Sigma \right) \mathrm{d} \mathbf{y}_i^* =: g_j^{-1} \left(\mathbf{f}(x_i) \right).$$

where we had defined $\mathbf{f}(x_i) = (f_1(x_i), \dots, f_m(x_i))^\top$. Now, the marginal, on which the posterior depends,

$$p(\mathbf{y}) = \int \prod_{i,j} \left\{ g_j^{-1} \left(\mathbf{f}(x_i) \right) \right\}^{[y_i = j]} \cdot \mathcal{N}_{nm} \left(\mathbf{f} \mid \mathbf{f}_0, \Sigma \otimes \mathcal{I}[f] \right) \mathrm{d}\mathbf{f},$$

cannot be found in closed form. By working in a fully Bayesian setting, we append model parameters and employ a variational approximation.

Spatio-Temporal Modelling of BTB^a

Determine the existence of spatial segregation of the different spoligotypes of bovine tuberculosis (BTB) in Cornwall, UK, and whether the spatial distribution had changed over time.

Constant model (constant RKHS)

 $p_{ij} = g_j^{-1} (\alpha_k)_{k=1}^m$

Spatial segregation (fBm RKHS)

 $p_{ij} = g_j^{-1} (\alpha_k + f_{1k}(x_i))_{k=1}^m$

Spatio-temporal segregation (ANOVA RKHS)

$$p_{ij} = g_j^{-1} (\alpha_k + f_{1k}(x_i) + f_{2k}(t_i) + f_{12k}(x_i, t_i))_{k=1}^m$$

dard errors for 100 runs of various training (s) and test (451 - s) sizes for the cardiac arrhythmia binary classification task.

	Misclassification rate (%)		
Method	s=50	s = 100	s=200
I-probit (linear)	34.5 (0.4)	31.4 (0.4)	29.7 (0.4)
I-probit (fBm)	34.7 (0.6)	27.3 (0.3)	24.5 (0.3)
GP (Gaussian)	37.3 (0.4)	33.8 (0.4)	29.3 (0.4)
L-1 logistic	34.9 (0.4)	30.5 (0.3)	26.1 (0.3)
SVM (linear)	36.2 (0.5)	35.6 (0.4)	35.2 (0.4)
SVM (Gaussian)	48.4 (0.5)	47.2 (0.5)	46.9 (0.4)
RF	31.7 (0.4)	26.7 (0.3)	22.4 (0.3)
<i>k</i> -NN	40.6 (0.3)	38.9 (0.3)	35.8 (0.4)

Conclusions

- Simple estimation of various categorical models:
 - Choice models (with or without IIA);
- Random-effects models;
- Binary and multiclass classification.
- Inference is straightforward (e.g. model comparison or (transformed) credibility intervals).
- Often gives better predictions.

References

[1] Wicher Bergsma.

Regression and classification with I-priors. arXiv: 1707.00274, July 2017.

- [2] Mark Girolami and Simon Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18(8), 2006.
- [3] Robert E McCulloch, Nicholas G Polson, and Peter E Rossi. A Bayesian analysis of the multinomial probit model with

• Functional covariates (\mathcal{X} a Hilbert-Sobolev space)

Evidence Lower Bound (ELBO) values for the three models are -1197.4, -665.3, and -656.2 respectively.

fully identified parameters. Journal of Econometrics, 99(1):173–193, 2000.

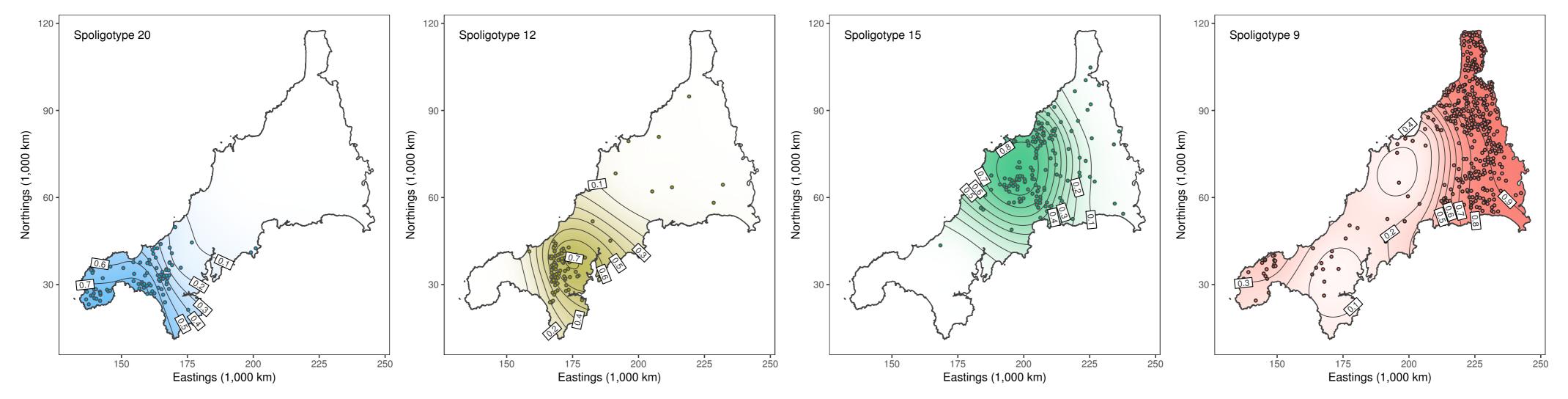


Figure 2: Predicted probability surfaces for BTB contraction in Cornwall for the four largest spoligotypes of the bacterium Mycobacterium bovis over the entire time period 1989–2002 using Model 2.

Data sources: ^aPeter Diggle, Pingping Zheng, and Peter Durr. Nonparametric estimation of spatial segregation in a multivariate point process: bovine tuberculosis in Cornwall, UK. J. Royal Stat. Soc. Series C (Appl. Statist.), 54(3):645–658, 2005. ^bTimothy I Cannings and Richard J Samworth. Random projection ensemble classification. J. Royal Stat. Soc. Series B (Stat. Methodol.), 79(4):959–1035, 2017.