Empirical bias-reducing adjustments for Item Response Theory (IRT) models IMPS 2024 @ Vysoká škola ekonomická v Praze

Haziq Jamil Assistant Professor in Statistics https://haziqj.ml

19 July 2024

Universiti Brunei Darussalarr

Joint work with Ioannis Kosmidis (Warwick)

Introduction

Example: Small-scale educational assessments or pilot studies where sample sizes are limited.

Standard IRT model estimates can be biased due to small sample sizes. We explore an empirical bias adjustment method to mitigate bias issues.

The 2PL IRT model

- Let Y_{si} ∈ {0,1} be the binary response of a subject s ∈ {1,..., n} to a set of test items index by i = 1,..., p.
- Assume independent Bernoulli responses with probability of success

$$\pi_{si} = \mathsf{P}(Y_{si} = 1)$$

The 2PL IRT model

- Let Y_{si} ∈ {0,1} be the binary response of a subject s ∈ {1,..., n} to a set of test items index by i = 1,..., p.
- Assume independent Bernoulli responses with probability of success

$$\pi_{si} = \mathsf{P}(Y_{si} = 1)$$

• The so-called two parameter logistic model (2PL) is

$$\log \frac{\pi_{si}(z,\theta)}{1-\pi_{si}(z,\theta)} = \eta_{si} := \overbrace{\alpha_i + \beta_i z_s}^{a_i(z_s-b_i)},$$

where the probability of success is modelled as a function of

- \circ individual latent traits $z=(z_1,\ldots,z_n)^ op$, and
- \circ model parameters heta, including
 - item "easiness" parameters α_i (location)
 - item discrimination parameters β_i (scale)

Traditional parameterisation: $b_i \mapsto -\alpha_i/\beta_i$ and $a_i \mapsto \beta_i$.

Estimation via MML

• Maximum marginal likelihood (MML) estimation [c.f. joint maximum likelihood (JML)] requires an additional assumption: $z_i \stackrel{iid}{\sim} N(0, 1)$.

Estimation via MML

- Maximum marginal likelihood (MML) estimation [c.f. joint maximum likelihood (JML)] requires an additional assumption: $z_i \stackrel{iid}{\sim} N(0,1)$.
- Then the MML involves maximisation of the likelihood

$$L(\theta) = \prod_{s=1}^n \int \prod_{i=1}^p \pi_{si}(z,\theta)^{y_{si}} (1-\pi_{si}(z,\theta))^{1-y_{si}} \phi(z_s) \,\mathrm{d} z_s$$

where $\phi(\theta_s)$ is the standard normal density function.

• This intractable integral is usually overcome using quadrature rules.

Estimation via MML

- Maximum marginal likelihood (MML) estimation [c.f. joint maximum likelihood (JML)] requires an additional assumption: $z_i \stackrel{iid}{\sim} N(0,1)$.
- Then the MML involves maximisation of the likelihood

$$L(\theta) = \prod_{s=1}^{n} \int \prod_{i=1}^{p} \pi_{si}(z,\theta)^{y_{si}} (1 - \pi_{si}(z,\theta))^{1 - y_{si}} \phi(z_s) \, \mathrm{d} z_s$$

where $\phi(\theta_s)$ is the standard normal density function.

- This intractable integral is usually overcome using quadrature rules.
- Some remarks:
 - It can be shown that bias is of $O(n^{-1})$, so in finite samples the bias is typically non-zero (Lord, 1986), though generally less biased than JML.
 - Parameters are consistent only when model is correctly specified (Bock & Aitkin, 1981).
 - MML is more robust to sample size variations and provides more stable item parameter estimates (Engelen, 1987).

Sources of (parameter) bias

- Small sample sizes
- Departure from normality, e.g. [can be treated using robust ML]
 - skewed latent traits (Wall et al., 2012); or
 - zero-inflated distributions (Wall et al., 2015).
- Model misspecification
 - Incorrect functional form (e.g. 2PL instead of 3PL)
 - Dimensionality (assuming unidimensional model for multidimensional data), model incorrectly assumes all items measure a single common trait when there are multiple underlying abilities
- Differences in response styles. E.g. careless respondents (Hong & Cheng, 2019) or tendency to use extreme categories
- Etc.

Bias correction

Requirements

	Method	Model	$B_G(\theta_0)$	Туре	$E(\cdot)$	$\partial \cdot$	$\hat{\theta}$
1	Asymptotic bias correction	full	analytical	explicit	 Image: A second s	✓	 Image: A start of the start of
2	Adjusted score functions	full	analytical	implicit	\checkmark	\checkmark	X
3	Bootstrap	partial	simulation	explicit	X	X	\checkmark
4	Jackknife	partial	simulation	explicit	X	X	\checkmark
5	Indirect inference	full	simulation	implicit	X	X	\checkmark
6	Explicit RBM	partial	analytical	explicit	X	\checkmark	\checkmark
7	Implicit RBM	partial	analytical	implicit	X	\checkmark	X

1–Efron (1975), Cordeiro and McCullagh (1991); 2–Firth (1993), Kosmidis and Firth (2009); 3–Efron and Tibshirani (1994), Hall and Martin (1988); 4–Quenouille (1956), Efron (1982); 5–Gourieroux et al. (1993), MacKinnon and Smith Jr (1998)

Empirical bias reducing adjustments

• Kosmidis and Lunardon (2024) introduces a novel general framework for reducing the bias in M-estimation, which is derived from asymptotically unbiased estimating functions.

Empirical bias reducing adjustments

- Kosmidis and Lunardon (2024) introduces a novel general framework for reducing the bias in M-estimation, which is derived from asymptotically unbiased estimating functions.
- Briefly, $\hat{\theta}$ is an M-estimator if $\hat{\theta} = \arg \min_{\theta} \sum_{s=1}^{n} \rho_s(\theta)$, or results from the solution (van der Vaart, 1998) of

$$\sum_{s=1}^n \psi_s(\theta) = 0.$$

[E.g. maximum likelihood: $\psi_s(\theta) = \nabla \log L_s(\theta)$.]

Empirical bias reducing adjustments

- Kosmidis and Lunardon (2024) introduces a novel general framework for reducing the bias in M-estimation, which is derived from asymptotically unbiased estimating functions.
- Briefly, $\hat{\theta}$ is an M-estimator if $\hat{\theta} = \arg \min_{\theta} \sum_{s=1}^{n} \rho_s(\theta)$, or results from the solution (van der Vaart, 1998) of

$$\sum_{s=1}^n \psi_s(\theta) = 0.$$

$[\mathsf{E}.\mathsf{g}.\mathsf{\ maximum\ likelihood}: \ \psi_{\mathsf{s}}(\theta) = \nabla \log \mathit{L}_{\mathsf{s}}(\theta).]$

• For *M*-estimators, it is possible to write down the bias function as

$$\mathsf{E}_{G}(\hat{\theta}-\theta_{0})=b(\theta_{0})+O(n^{-3/2}),$$

where $b(\theta_0)$ may be approximated empirically by a function of derivatives of $\psi_s(\theta)$.

• Then, a reduced-bias estimator is simply $\hat{ heta} - b(\hat{ heta})$.

6 / 12

Implicit reduced bias M-estimators (iRBM)

• The estimator $\tilde{\theta}^{(\mathrm{iRBM})}$ is obtained from

$$\tilde{\theta}^{(\mathrm{iRBM})} = \arg \max_{\theta} \left\{ \log L(\theta) - \frac{1}{2} \operatorname{tr} \left[j(\theta)^{-1} e(\theta) \right] \right\}, \quad \text{where}$$

 $\begin{array}{l} \circ \ \ j(\theta) = -\sum_{s=1}^{n} \nabla^2 \log L_s(\theta) \ \text{is the observed information matrix,} \\ \circ \ \ e(\theta) = \sum_{s=1}^{n} \nabla \log L_s(\theta) \nabla \log L_s(\theta)^\top \ \text{is the cross-products of the scores.} \end{array}$

Implicit reduced bias M-estimators (iRBM)

• The estimator $\tilde{\theta}^{(\mathrm{iRBM})}$ is obtained from

$$\tilde{\theta}^{(\mathrm{iRBM})} = \arg \max_{\theta} \left\{ \log L(\theta) - \frac{1}{2} \operatorname{tr} \left[j(\theta)^{-1} e(\theta) \right] \right\}, \quad \text{where}$$

 $\begin{array}{l} \circ \ j(\theta) = -\sum_{s=1}^{n} \nabla^2 \log L_s(\theta) \text{ is the observed information matrix,} \\ \circ \ e(\theta) = \sum_{s=1}^{n} \nabla \log L_s(\theta) \nabla \log L_s(\theta)^{\top} \text{ is the cross-products of the scores.} \end{array}$

• The iRBM estimator is consistent and asymptotically normal, i.e.

$$\sqrt{n}(\tilde{\theta}^{(i\mathsf{RBM})} - \theta_0) \xrightarrow{\mathsf{D}} \mathsf{N}(0, j(\theta_0)^{-1} e(\theta_0) j(\theta_0)^{-\top}).$$

and has smaller bias than the M-estimator $\hat{\theta}$.

Implicit reduced bias M-estimators (iRBM)

• The estimator $\tilde{\theta}^{(\mathrm{iRBM})}$ is obtained from

$$\tilde{\theta}^{(\mathrm{iRBM})} = \arg \max_{\theta} \left\{ \log L(\theta) - \frac{1}{2} \operatorname{tr} \left[j(\theta)^{-1} e(\theta) \right] \right\}, \quad \text{where}$$

 $\begin{array}{l} \circ \ j(\theta) = -\sum_{s=1}^{n} \nabla^2 \log L_s(\theta) \text{ is the observed information matrix,} \\ \circ \ e(\theta) = \sum_{s=1}^{n} \nabla \log L_s(\theta) \nabla \log L_s(\theta)^{\top} \text{ is the cross-products of the scores.} \end{array}$

• The iRBM estimator is consistent and asymptotically normal, i.e.

$$\sqrt{n}(\tilde{\theta}^{(iRBM)} - \theta_0) \xrightarrow{D} N(0, j(\theta_0)^{-1}e(\theta_0)j(\theta_0)^{-\top}).$$

and has smaller bias than the M-estimator $\hat{\theta}$.

• Components of the estimated θ may "blow up" under certain data configurations (e.g. perfect separation). To mitigate this, a shrinkage factor can be applied to obtain a penalised iRBM estimator from

$$\tilde{\theta}^{(\mathsf{iRBMp})} = \arg\max_{\theta} \left\{ \log L(\theta) - \frac{1}{2} \operatorname{tr} \left[j(\theta)^{-1} e(\theta) \right] - \frac{1}{n} \|\theta\|^2 \right\}.$$

Explicit reduced bias M-estimators (eRBM)

 Another estimator with the same bias properties as the iRBM is the eRBM, which is obtained via

$$\tilde{\theta}^{(\mathsf{eRBM})} = \hat{\theta} + j(\hat{\theta})^{-1} A(\hat{\theta}),$$

where

$$A(\hat{ heta}) = -rac{1}{2}
abla \operatorname{tr}\left\{j(heta)^{-1} e(heta)
ight\} \bigg|_{ heta = \hat{ heta}}.$$

Explicit reduced bias M-estimators (eRBM)

• Another estimator with the same bias properties as the iRBM is the eRBM, which is obtained via

$$\tilde{\theta}^{(\mathsf{eRBM})} = \hat{\theta} + j(\hat{\theta})^{-1} A(\hat{\theta}),$$

where

$$A(\hat{\theta}) = -\frac{1}{2} \nabla \operatorname{tr} \left\{ j(\theta)^{-1} e(\theta) \right\} \bigg|_{\theta = \hat{\theta}}.$$

- Operationally the eRBM is simpler, though requiring accurate computation of the bias term to be effective (usually involving numerical routines).
- One downside: No saving infinite estimates.

Simulation setup

Ubd Universiti Brunei Darussalam

Simulation results

Effects of sample size and no. of items

Method - ML - iRBM - iRBM+ - eRBM

Simulation results

Effects of sample size and departure from normality

Method - ML - iRBM - iRBM+ - eRBM

Conclusions

- Small sample size and departure from normality can lead to bias in the parameter estimates of IRT models.
- The iRBM and eRBM estimators are effective in reducing bias for the 2PL IRT model in small sample sizes when the normality assumption is correct.
- Way forward:
 - Comparison to other bias reduction methods (e.g. bootstrap, jackknife, etc.).
 - Investigate the performance of the iRBM and eRBM estimators in more complex IRT models (3PL and multidimensional IRT models).
 - Refine simulations to include more complex departures from normality.
 - Software?

Thank you!

References

- Bock, R. D., & Aitkin, M. (1981).Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. *Psychometrika*, 46(4), 443–459. https://doi.org/10.1007/BF02293801
- Cordeiro, G. M., & McCullagh, P. (1991).Bias correction in generalized linear models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 53(3), 629–643.
- Efron, B. (1975).Defining the curvature of a statistical problem (with applications to second order efficiency). *The Annals of Statistics*, 1189–1242.
- Efron, B. (1982, January). The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611970319
- Efron, B., & Tibshirani, R. J. (1994, May). An Introduction to the Bootstrap. Chapman and Hall/CRC. https://doi.org/10.1201/9780429246593
- Engelen, R. J. H. (1987). A review of different estimation procedures in the Rasch model.
- Firth, D. (1993).Bias reduction of maximum likelihood estimates. *Biometrika*, *80*(1), 27–38. https://doi.org/10.1093/biomet/80.1.27
- Gourieroux, C., Monfort, A., & Renault, E. (1993).Indirect inference. *Journal of Applied Econometrics*, 8(S1), S85–S118. https://doi.org/10.1002/jae.3950080507
- Hall, P., & Martin, M. A. (1988).On bootstrap resampling and iteration. *Biometrika*, 75(4), 661–671.
- Hong, M. R., & Cheng, Y. (2019).Robust maximum marginal likelihood (RMML) estimation for item response theory models. *Behavior Research Methods*, 51(2), 573–588. https://doi.org/10.3758/s13428-018-1150-4

References

- Kosmidis, I., & Firth, D. (2009).Bias reduction in exponential family nonlinear models. Biometrika, 96(4), 793–804.
- Kosmidis, I., & Lunardon, N. (2024). Empirical bias-reducing adjustments to estimating functions. Journal of the Royal Statistical Society Series B: Statistical Methodology, 86(1), 62–89. https://doi.org/10.1093/jrsssb/qkad083
- Lord, F. M. (1986).Maximum Likelihood and Bayesian Parameter Estimation in Item Response Theory. Journal of Educational Measurement, 23(2), 157–162.
- MacKinnon, J. G., & Smith Jr, A. A. (1998). Approximate bias correction in econometrics. Journal of Econometrics, 85(2), 205–230.
- Quenouille, M. H. (1956). Notes on bias in estimation. *Biometrika*, 43(3/4), 353-360.
- van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press. https://doi.org/10.1017/CBO9780511802256
- Wall, M. M., Guo, J., & Amemiya, Y. (2012).Mixture Factor Analysis for Approximating a Nonnormally Distributed Continuous Latent Factor With Continuous and Dichotomous Observed Variables. *Multivariate Behavioral Research*, 47(2), 276–313. https://doi.org/10.1080/00273171.2012.658339
- Wall, M. M., Park, J. Y., & Moustaki, I. (2015).IRT modeling in the presence of zero-inflation with application to psychiatric disorderseverity. *Applied Psychological Measurement*, 39(8), 583–597.