

Item Response Theory (IRT) models: Reducing bias in small

samples FOS Seminar | Brunei R User Group

Haziq Jamil *Assistant Professor in Statistics* https://haziqj.ml

4 September 2024

Joint work with Ioannis Kosmidis (Warwick)

Context

In *educational assessments*, data *Y* are composed of several test items from students. Each item is marked **correct** $(Y = 1)$ or **wrong** $(Y = 0)$.

Context

In *educational assessments*, data *Y* are composed of several test items from students. Each item is marked **correct** $(Y = 1)$ or **wrong** $(Y = 0)$.

It is common to enquire, from this set of data, the **reliability** and **validity** of the assessment, including:

1. How **difficult** is each test item?

Context

In *educational assessments*, data *Y* are composed of several test items from students. Each item is marked **correct** $(Y = 1)$ or **wrong** $(Y = 0)$.

It is common to enquire, from this set of data, the **reliability** and **validity** of the assessment, including:

- 1. How **difficult** is each test item?
- 2. How well does each item **discriminate** between students of different ability levels?

Context

In *educational assessments*, data *Y* are composed of several test items from students. Each item is marked **correct** $(Y = 1)$ or **wrong** $(Y = 0)$.

It is common to enquire, from this set of data, the **reliability** and **validity** of the assessment, including:

- 1. How **difficult** is each test item?
- 2. How well does each item **discriminate** between students of different ability levels?
- 3. Can I accurately estimate students' **abilities**?

The IRT family of models provides a statistical framework for addressing these sorts of questions.

Example A typical data set

Example (cont.)

Simple scores and item difficulties

Example (cont.)

Item discrimination

The Item Response Theory (IRT) model

- Let $Y_{si} \in \{0, 1\}$ represent the binary response of a subject $s \in \{1, \ldots, n\}$ to a set of test items indexed by $i = 1, \ldots, p$.
- *•* Assume independent Bernoulli responses, i.e.

$$
Y_{si} = \begin{cases} 1 \text{ (correct)} & \text{w.p. } \pi_{si} \\ 0 \text{ (wrong)} & \text{w.p. } 1 - \pi_{si} \end{cases}
$$

The Item Response Theory (IRT) model

- *•* Let *Ysi ∈ {*0*,* 1*}* represent the binary response of a subject *s ∈ {*1*, . . . , n}* to a set of test items indexed by $i = 1, \ldots, p$.
- *•* Assume independent Bernoulli responses, i.e.

$$
Y_{si} = \begin{cases} 1 \text{ (correct)} & \text{w.p. } \pi_{si} \\ 0 \text{ (wrong)} & \text{w.p. } 1 - \pi_{si} \end{cases}
$$

• We can model the probability of success using the two-parameter logistic model (2PL) defined by:

$$
\pi_{\textit{si}}(\textit{\textbf{z}}, \boldsymbol{\theta}) := \textsf{Pr}(\textsf{Y}_{\textit{si}} = 1 \mid \textit{\textbf{z}}, \boldsymbol{\theta}) = \frac{e^{a_{i}(\textit{\textbf{z}}_{\textit{s}} - b_{i})}}{1 + e^{a_{i}(\textit{\textbf{z}}_{\textit{s}} - b_{i})}},
$$

where

- *◦ z* = (*z*1*, . . . , zn*) *[⊤]* are the **latent traits** of the subjects; and
- ϕ θ = $(a_i, b_i)_{i=1}^p$ are the **model parameters**, including
	- *•* item **difficulty** parameters *bⁱ* (location) and
	- *•* item **discrimination** parameters *aⁱ* (scale).

The Item Response Theory (IRT) model

- *•* Let *Ysi ∈ {*0*,* 1*}* represent the binary response of a subject *s ∈ {*1*, . . . , n}* to a set of test items indexed by $i = 1, \ldots, p$.
- *•* Assume independent Bernoulli responses, i.e.

$$
Y_{si} = \begin{cases} 1 \text{ (correct)} & \text{w.p. } \pi_{si} \\ 0 \text{ (wrong)} & \text{w.p. } 1 - \pi_{si} \end{cases}
$$

• We can model the probability of success using the two-parameter logistic model (2PL) defined by:

$$
\text{logit Pr}(Y_{si}=1\mid \bm{z}, \bm{\theta}) = \text{log } \frac{\pi_{si}(\bm{z}, \bm{\theta})}{1 - \pi_{si}(\bm{z}, \bm{\theta})} = a_i(z_s - b_i),
$$

where

- *◦ z* = (*z*1*, . . . , zn*) *[⊤]* are the **latent traits** of the subjects; and
- ϕ θ = $(a_i, b_i)_{i=1}^p$ are the **model parameters**, including
	- *•* item **difficulty** parameters *bⁱ* (location) and
	- *•* item **discrimination** parameters *aⁱ* (scale).

Interpretation

Effect of item difficulties on response probabilities

Interpretation

Effect of item discriminations on response probabilities

Family of IRT models

• The 2PL IRT model is a special case of the wider class of IRT models

$$
\pi_{\textit{si}}(\textit{\textbf{z}}, \boldsymbol{\theta}) := \textsf{Pr}\!\left(\left.Y_{\textit{si}}=1 \mid \textit{\textbf{z}}, \boldsymbol{\theta}\right) = c_i + (1-c_i) \frac{e^{a_i\left(\textit{\textbf{z}}_s-b_i\right)}}{1+e^{a_i\left(\textit{\textbf{z}}_s-b_i\right)}}.
$$

Family of IRT models

• The 2PL IRT model is a special case of the wider class of IRT models

$$
\pi_{\textit{si}}(\textit{\textbf{z}}, \boldsymbol{\theta}) := \textsf{Pr}\!\left(\left.Y_{\textit{si}}=1 \mid \textit{\textbf{z}}, \boldsymbol{\theta}\right) = c_i + (1-c_i) \frac{e^{a_i\left(\textit{\textbf{z}}_s-b_i\right)}}{1+e^{a_i\left(\textit{\textbf{z}}_s-b_i\right)}}.
$$

• The above is the **3PL IRT** model, where *cⁱ* is the *guessing* parameter.

Family of IRT models

• The 2PL IRT model is a special case of the wider class of IRT models

$$
\pi_{\textit{si}}(\textit{\textbf{z}}, \boldsymbol{\theta}) := \textsf{Pr}\!\left(\left.Y_{\textit{si}}=1 \mid \textit{\textbf{z}}, \boldsymbol{\theta}\right) = c_i + (1-c_i) \frac{e^{a_i\left(\textit{\textbf{z}}_s-b_i\right)}}{1+e^{a_i\left(\textit{\textbf{z}}_s-b_i\right)}}.
$$

• The above is the **3PL IRT** model, where *cⁱ* is the *guessing* parameter.

• When $c_i = 0$ and $a_i = 0$ for all $i = 1, \ldots, p$, then we have the **1PL IRT** model, commonly known as the *Rasch model*. 8 / 27

Program for International Student Assessment (PISA)

• An international assessment that measures 15 year-old students' reading, mathematics, and science literacy (primarily among OECD nations).

- *•* PISA primarily makes use of the Rasch (1PL) model for
	- *◦* **Scoring students**: Estimate students' abilities (latent traits).
	- *◦* **Item calibration**: Ensure items are appropriately challenging and can effectively differentiate students.
	- **Reporting outcomes:** Country and trends analyses.
	- *◦* **Diagnostic information**: Identify strengths and weakness in specific areas.

In Brunei

secara stratified sahaja. Tetapi yes 'kitani' sudah dapat, أَنْحَمْدُ لِله, 'kitani' sudah dapat, dapat mencari juga beberapa predictive tools dapat vang digunakan dan *the team*, أَنْحَمْدُ لِلهِ, dapat menggunakan predictive tools seperti rush model analysis RN Conquest untuk mengira linear dan multiple regression dan other predictive analysis. Jawapannya ada.

 $\bullet \bullet \bullet \Box \times \langle \rangle \bullet \Box$ is borneobulletin.com.bn \circlearrowright (i) \bigcirc + \Box > [5] "Students" achievements show ministry strategy successful" | Borneo Bulletin Online LEGCO NATIONAL 'Students' achievements show ministry strategy successful' March 14, 2024 CONTAINSIN

Brunei students' achievement at the Programme for International Student Assessment (PISA) 2022 from PISA 2018 in all three domains of mathematics, reading and science was highlighted at the 20th session of the Legislative Council (LegCo) meeting vesterday.

Minister of Education Yang Berhormat Datin Seri Setia Dr Hajah Romaizah binti Haji Mohd Salleh in response to a query by LegCo member Yang Berhormat Haji Salleh Bostaman bin Haji Zainal Abidin said, "The improvement has shown that our strategy is successful. But we strive to enhance our strategy again by reviewing the curriculum. enhancing teaching and learning, and teacher's professional development and to continue students' assessment and enhancing ICT technology."

The minister added, "However, it is yet to put the nation among the top in the rankings. Only four countries including Brunel Darussalam have shown an increase in these three domains."

Source: MMN Hansard 13/3/24 (am) & Borneo **Bulletin 14/3/24**

Software

Many software packages available, ranging from expensive commercial software (flexMIRT™, IRTPRO™, PARSCALE*^a*) to free and open-source (e.g. in R: {mirt}, {ltm}, {lavaan}*^b*).

The software mentioned in the MMN Hansard is Acer's ConQuest.

^aAnnual licence fee of \$10,600! b 21,000+ citations.

\$659.00

ACER ConOuest 5 Multiple Standard Licence - Windows

 \vee In stock

Estimation, bias, and correction

Simulation study

Conclusions

Estimation via MML

• Maximum marginal likelihood (MML) estimation [c.f. joint maximum $\textsf{likelihood (JML)}\textsf{[equires an additional assumption: } z_{\mathsf{s}} \stackrel{\textsf{iid}}{\sim} \mathsf{N}(0,1).$

Estimation via MML

- *•* Maximum marginal likelihood (MML) estimation [c.f. joint maximum likelihood (JML)] requires an additional assumption: $z_s \stackrel{\text{iid}}{\sim} N(0,1)$.
- *•* Then the MML involves maximisation of the likelihood

$$
L(\theta) = \prod_{s=1}^n \int \prod_{i=1}^p \pi_{si}(z,\theta)^{y_{si}}(1-\pi_{si}(\boldsymbol{z},\theta))^{1-y_{si}}\phi(z_s) dz_s
$$

where $\phi(\theta_s)$ is the standard normal density function.

• This intractable integral is usually overcome using quadrature rules.

Estimation via MML

- *•* Maximum marginal likelihood (MML) estimation [c.f. joint maximum likelihood (JML)] requires an additional assumption: $z_s \stackrel{\text{iid}}{\sim} N(0,1)$.
- *•* Then the MML involves maximisation of the likelihood

$$
L(\theta) = \prod_{s=1}^n \int \prod_{i=1}^p \pi_{si}(z,\theta)^{y_{si}} (1 - \pi_{si}(z,\theta))^{1 - y_{si}} \phi(z_s) dz_s
$$

where $\phi(\theta_s)$ is the standard normal density function.

- *•* This intractable integral is usually overcome using quadrature rules.
- *•* Some remarks:
	- *◦* It can be shown that bias is of *O*(*n −*1), so in finite samples the bias is typically non-zero (Lord, 1986), though generally less biased than JML.
	- *◦* Parameters are consistent only when model is correctly specified (Bock & Aitkin, 1981).
	- *◦* MML is more robust to sample size variations and provides more stable item parameter estimates (Engelen, 1987).

{ltm} R package

The {ltm} package is available on CRAN. Example using Law School Admission Test (LSAT) from the US.

```
# install.packages("ltm")
library(ltm)
head(LSAT) # contained within {ltm}
```


{ltm} R package (cont.) Fit a 2PL model

 $(fit \leftarrow \text{ltm}(LSAT \sim z1, IRT.param = TRUE))$

```
Call:
ltm(formula = LSAT ~ z1, IRT.param = TRUE)
```
Coefficients:

Log.Lik: -2466.653

{ltm} R package (cont.) Plot Item Characteristic Curves (ICC)

plot(fit)

UDO Brunei

Item Characteristic Curves

{ltm} R package (cont.) Plot Item **Information** Curves (IIC)

plot(fit, type = "IIC")

Item Information Curves

UDO Brunei

{ltm} R package (cont.) Fit Rasch models

constr sets the (common) discrimination parameter to 1 $(fit \leftarrow \text{rasch}(LSAT, \text{constr} = \text{cbind}(length(LSAT) + 1, 1)))$

 $Ca11:$ $rasch(data = LSAT, constraint = cbind(length(LSAT) + 1, 1))$ Coefficients: Dffclt.Item 1 Dffclt.Item 2 Dffclt.Item 3

 -2.872 -1.063 -0.258 Dffclt.Item 4 Dffclt.Item 5 Dscrmn -1.388 -2.219 1.000

Log.Lik: -2473.054

Bias problem

In practice, sample size can be limited.

- *•* Small-scale educational assessments, or
- Pilot studies (before deploying the test proper).

Standard IRT model estimates can be biased due to small sample sizes. We explore an empirical bias adjustment method to mitigate bias issues.

Sources of (parameter) bias

Besides small sample sizes…

- *•* Departure from normality, e.g. [can be treated using robust ML]
	- *◦* skewed latent traits (Wall et al., 2012); or
	- *◦* zero-inflated distributions (Wall et al., 2015).
- *•* Model misspecification
	- *◦* Incorrect functional form (e.g. 2PL instead of 3PL)
	- *◦* Dimensionality (assuming unidimensional model for multidimensional data), model incorrectly assumes all items measure a single common trait when there are multiple underlying abilities
- *•* Differences in response styles. E.g. careless respondents (Hong & Cheng, 2019) or tendency to use extreme categories
- *•* Etc.

Bias correction

1–Efron (1975), Cordeiro and McCullagh (1991); 2–Firth (1993), Kosmidis and Firth (2009); 3–Efron and Tibshirani (1994), Hall and Martin (1988); 4–Quenouille (1956), Efron (1982); 5–Gourieroux et al. (1993), MacKinnon and Smith Jr (1998)

Empirical bias reducing adjustments

• Kosmidis and Lunardon (2024) introduces a novel general framework for reducing the bias in M-estimation, which is derived from asymptotically unbiased estimating functions.

Empirical bias reducing adjustments

- *•* Kosmidis and Lunardon (2024) introduces a novel general framework for reducing the bias in M-estimation, which is derived from asymptotically unbiased estimating functions.
- \bullet Briefly, $\hat{\theta}$ is an M-estimator if $\hat{\theta} = \arg\min_{\theta} \sum_{s=1}^n \rho_s(\theta)$, or results from the solution (van der Vaart, 1998) of

$$
\sum_{s=1}^n \psi_s(\theta) = 0.
$$

[E.g. maximum likelihood: *ψs*(*θ*) = *∇* log *Ls*(*θ*).]

Empirical bias reducing adjustments

- *•* Kosmidis and Lunardon (2024) introduces a novel general framework for reducing the bias in M-estimation, which is derived from asymptotically unbiased estimating functions.
- \bullet Briefly, $\hat{\theta}$ is an M-estimator if $\hat{\theta} = \arg\min_{\theta} \sum_{s=1}^n \rho_s(\theta)$, or results from the solution (van der Vaart, 1998) of

$$
\sum_{s=1}^n \psi_s(\theta) = 0.
$$

• For *M*-estimators, it is possible to write down the bias function as

$$
\mathsf{E}_G(\hat{\theta}-\theta_0)=b(\theta_0)+O(n^{-3/2}),
$$

where $b(\theta_0)$ may be approximated empirically by a function of derivatives of *ψs*(*θ*).

• Then, a reduced-bias estimator is simply *θ*ˆ*− b*(*θ*ˆ).

UOO Brunei

Implicit reduced bias M-estimators (iRBM)

• The estimator $\tilde{\theta}^{\text{(iRBM)}}$ is obtained from

$$
\tilde{\theta}^{(\text{iRBM})} = \arg \max_{\theta} \left\{ \log L(\theta) - \frac{1}{2} \operatorname{tr} \left[j(\theta)^{-1} e(\theta) \right] \right\}, \quad \text{where}
$$

 \circ *j*(*θ*) = − $\sum_{s=1}^{n}$ $∇^{2}$ log *L_s*(*θ*) is the observed information matrix, \circ $\mathbf{e}(\theta) = \sum_{s=1}^{n} \nabla \log L_s(\theta) \nabla \log L_s(\theta)^{\top}$ is the cross-products of the scores.

Implicit reduced bias M-estimators (iRBM)

• The estimator $\tilde{\theta}^{\text{(iRBM)}}$ is obtained from

$$
\tilde{\theta}^{(\text{iRBM})} = \arg \max_{\theta} \left\{ \log L(\theta) - \frac{1}{2} \operatorname{tr} \left[j(\theta)^{-1} e(\theta) \right] \right\}, \quad \text{where}
$$

 \circ *j*(*θ*) = − $\sum_{s=1}^{n}$ ∇^2 log *L_s*(*θ*) is the observed information matrix, \circ $\hat{e}(\theta) = \sum_{s=1}^{n} \nabla \log L_s(\theta) \nabla \log L_s(\theta)^{\top}$ is the cross-products of the scores.

• The iRBM estimator is consistent and asymptotically normal, i.e.

$$
\sqrt{n}(\tilde{\theta}^{(iRBM)} - \theta_0) \xrightarrow{D} \mathsf{N}(0,j(\theta_0)^{-1}e(\theta_0)j(\theta_0)^{-\top}).
$$

and has smaller bias than the M-estimator $\hat{\theta}.$

Implicit reduced bias M-estimators (iRBM)

• The estimator $\tilde{\theta}^{\text{(iRBM)}}$ is obtained from

$$
\tilde{\theta}^{(\text{iRBM})} = \arg \max_{\theta} \left\{ \log L(\theta) - \frac{1}{2} \operatorname{tr} \left[j(\theta)^{-1} e(\theta) \right] \right\}, \quad \text{where}
$$

 \circ *j*(*θ*) = − $\sum_{s=1}^{n}$ ∇^2 log *L_s*(*θ*) is the observed information matrix, \circ $\hat{e}(\theta) = \sum_{s=1}^{n} \nabla \log L_s(\theta) \nabla \log L_s(\theta)^{\top}$ is the cross-products of the scores.

• The iRBM estimator is consistent and asymptotically normal, i.e.

$$
\sqrt{n}(\tilde{\theta}^{(iRBM)} - \theta_0) \xrightarrow{D} N(0, j(\theta_0)^{-1}e(\theta_0)j(\theta_0)^{-T}).
$$

and has smaller bias than the M-estimator $\hat{\theta}.$

• Components of the estimated *θ* may "blow up" under certain data configurations (e.g. perfect separation). To mitigate this, a shrinkage factor can be applied to obtain a *penalised* iRBM estimator from

$$
\widetilde{\theta}^{(\text{iRBMp})} = \argmax_{\theta} \left\{ \log L(\theta) - \frac{1}{2} \operatorname{tr} \left[j(\theta)^{-1} e(\theta) \right] - \frac{1}{n} \|\theta\|^2 \right\}.
$$

Explicit reduced bias M-estimators (eRBM)

• Another estimator with the same bias properties as the iRBM is the eRBM, which is obtained via

$$
\tilde{\theta}^{(\text{eRBM})} = \hat{\theta} + j(\hat{\theta})^{-1} A(\hat{\theta}),
$$

where

$$
A(\hat{\theta}) = -\frac{1}{2} \nabla \operatorname{tr} \left\{ j(\theta)^{-1} e(\theta) \right\} \bigg|_{\theta = \hat{\theta}}.
$$

Explicit reduced bias M-estimators (eRBM)

• Another estimator with the same bias properties as the iRBM is the eRBM, which is obtained via

$$
\tilde{\theta}^{(\text{eRBM})} = \hat{\theta} + j(\hat{\theta})^{-1} A(\hat{\theta}),
$$

where

$$
A(\hat{\theta}) = -\frac{1}{2} \nabla \operatorname{tr} \left\{ j(\theta)^{-1} e(\theta) \right\} \bigg|_{\theta = \hat{\theta}}.
$$

- *•* Operationally the eRBM is simpler, though requiring accurate computation of the bias term to be effective (usually involving numerical routines).
- *•* One downside: No saving infinite estimates.

Estimation, bias, and correction

Simulation study

Conclusions

Simulation setup

Simulation results

Effects of sample size and no. of items

 $Method$ \longrightarrow ML \longrightarrow $iRBM$ \longrightarrow $iRBM$ \longrightarrow $eRBM$

Simulation results

Effects of sample size and departure from normality

 $Method$ ML \longrightarrow $iRBM$ \longrightarrow $iRBM$ \longrightarrow $eRBM$

Estimation, bias, and correction

Simulation study

Conclusions

Conclusions

- *•* Small sample size and departure from normality can lead to bias in the parameter estimates of IRT models.
- *•* The iRBM and eRBM estimators are effective in reducing bias for the 2PL IRT model in small samples when the normality assumption holds.
- *•* Way forward:
	- *◦* Comparison to other bias reduction methods (e.g. bootstrap, jackknife, etc.).
	- *◦* Investigate the performance of the iRBM and eRBM estimators in more complex IRT models (3PL and multidimensional IRT models).
	- *◦* Refine simulations to include more complex departures from normality.

Thank you!

References

- *•* Bock, R. D., & Aitkin, M. (1981).Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. *Psychometrika*, *46*(4), 443–459. https://doi.org/10.1007/BF02293801
- *•* Cordeiro, G. M., & McCullagh, P. (1991).Bias correction in generalized linear models. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, *53*(3), 629–643.
- *•* Efron, B. (1975).Defining the curvature of a statistical problem (with applications to second order efficiency). *The Annals of Statistics*, 1189–1242.
- *•* Efron, B. (1982, January). *The Jackknife, the Bootstrap and Other Resampling Plans*. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611970319
- *•* Efron, B., & Tibshirani, R. J. (1994, May). *An Introduction to the Bootstrap*. Chapman and Hall/CRC. https://doi.org/10.1201/9780429246593
- *•* Engelen, R. J. H. (1987).A review of different estimation procedures in the Rasch model.
- *•* Firth, D. (1993).Bias reduction of maximum likelihood estimates. *Biometrika*, *80*(1), 27–38. https://doi.org/10.1093/biomet/80.1.27
- *•* Gourieroux, C., Monfort, A., & Renault, E. (1993).Indirect inference. *Journal of Applied Econometrics*, *8*(S1), S85–S118. https://doi.org/10.1002/jae.3950080507
- *•* Hall, P., & Martin, M. A. (1988).On bootstrap resampling and iteration. *Biometrika*, *75*(4), 661–671.
- *•* Hong, M. R., & Cheng, Y. (2019).Robust maximum marginal likelihood (RMML) estimation for item response theory models. *Behavior Research Methods*, *51*(2), 573–588. https://doi.org/10.3758/s13428-018-1150-4

References

- *•* Kosmidis, I., & Firth, D. (2009).Bias reduction in exponential family nonlinear models. *Biometrika*, *96*(4), 793–804.
- *•* Kosmidis, I., & Lunardon, N. (2024).Empirical bias-reducing adjustments to estimating functions. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, *86*(1), 62–89. https://doi.org/10.1093/jrsssb/qkad083
- Lord, F. M. (1986). Maximum Likelihood and Bayesian Parameter Estimation in Item Response Theory. *Journal of Educational Measurement*, *23*(2), 157–162.
- *•* MacKinnon, J. G., & Smith Jr, A. A. (1998).Approximate bias correction in econometrics. *Journal of Econometrics*, *85*(2), 205–230.
- *•* Quenouille, M. H. (1956).Notes on bias in estimation. *Biometrika*, *43*(3/4), 353–360. *•* van der Vaart, A. W. (1998). *Asymptotic Statistics*. Cambridge University Press. https://doi.org/10.1017/CBO9780511802256
- *•* Wall, M. M., Guo, J., & Amemiya, Y. (2012).Mixture Factor Analysis for Approximating a Nonnormally Distributed Continuous Latent Factor With Continuous and Dichotomous Observed Variables. *Multivariate Behavioral Research*, *47*(2), 276–313. https://doi.org/10.1080/00273171.2012.658339
- *•* Wall, M. M., Park, J. Y., & Moustaki, I. (2015).IRT modeling in the presence of zero-inflation with application to psychiatric disorderseverity. *Applied Psychological Measurement*, *39*(8), 583–597.