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Introduction

Context
In educational assessments, data Y are composed
of several test items from students. Each item is
marked correct (Y = 1) or wrong (Y = 0).

It is common to enquire, from this set of data, the reliability and validity
of the assessment, including:
1. How difficult is each test item?
2. How well does each item discriminate between students of different

ability levels?
3. Can I accurately estimate students’ abilities?
The IRT family of models provides a statistical framework for addressing
these sorts of questions.
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Example
A typical data set

Student Item1 Item2 Item3 Item4 Item5
1 1 1 1 1 1
2 0 1 1 1 1
3 1 1 0 1 1
4 1 1 1 1 0
5 1 1 1 1 0
6 0 0 1 1 0
7 1 0 0 0 0
8 0 0 0 1 0
9 1 0 0 0 0
10 0 0 0 0 0
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Example (cont.)
Simple scores and item difficulties

Student Item1 Item2 Item3 Item4 Item5 Score
1 1 1 1 1 1 5
2 0 1 1 1 1 4
3 1 1 0 1 1 4
4 1 1 1 1 0 4
5 1 1 1 1 0 4
6 0 0 1 1 0 2
7 1 0 0 0 0 1
8 0 0 0 1 0 1
9 1 0 0 0 0 1
10 0 0 0 0 0 0
Difficulty 4 5 5 3 7
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Example (cont.)
Item discrimination

Student Item1 Item2 Item3 Item4 Item5 Score
1 1 1 1 1 1 5
2 0 1 1 1 1 4
3 1 1 0 1 1 4
4 1 1 1 1 0 4
5 1 1 1 1 0 4
Difficulty 1 0 1 0 2
6 0 0 1 1 0 2
7 1 0 0 0 0 1
8 0 0 0 1 0 1
9 1 0 0 0 0 1
10 0 0 0 0 0 0
Difficulty 3 5 4 3 5
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The Item Response Theory (IRT) model

• Let Ysi ∈ {0, 1} represent the binary response of a subject s ∈ {1, . . . , n}
to a set of test items indexed by i = 1, . . . , p.

• Assume independent Bernoulli responses, i.e.

Ysi =

{
1 (correct) w.p. πsi
0 (wrong) w.p. 1 − πsi
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• We can model the probability of success using the two-parameter logistic
model (2PL) defined by:

πsi(z,θ) := Pr(Ysi = 1 | z,θ) = eai(zs−bi)

1 + eai(zs−bi)
,

where
◦ z = (z1, . . . , zn)⊤ are the latent traits of the subjects; and
◦ θ = (ai, bi)

p
i=1 are the model parameters, including

• item difficulty parameters bi (location) and
• item discrimination parameters ai (scale).
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Interpretation
Effect of item difficulties on response probabilities
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Interpretation
Effect of item discriminations on response probabilities
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Family of IRT models

• The 2PL IRT model is a special case of the wider class of IRT models

πsi(z,θ) := Pr(Ysi = 1 | z,θ) = ci + (1 − ci)
eai(zs−bi)

1 + eai(zs−bi)
.

• The above is the 3PL IRT model, where ci is the guessing parameter.
• When ci = 0 and ai = 0 for all i = 1, . . . , p, then we have the 1PL IRT

model, commonly known as the Rasch model.
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Program for International Student Assessment
(PISA)

Credit: https://seasia.co/

• An international assessment that
measures 15 year-old students’ reading,
mathematics, and science literacy
(primarily among OECD nations).

• PISA primarily makes use of the Rasch
(1PL) model for
◦ Scoring students: Estimate students’

abilities (latent traits).
◦ Item calibration: Ensure items are

appropriately challenging and can
effectively differentiate students.

◦ Reporting outcomes: Country and
trends analyses.

◦ Diagnostic information: Identify
strengths and weakness in specific
areas.
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In Brunei
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Software

Many software packages available,
ranging from expensive commercial
software (flexMIRT™, IRTPRO™,
PARSCALEa) to free and open-source
(e.g. in R: {mirt}, {ltm}, {lavaan}b).

The software mentioned in the MMN
Hansard is Acer’s ConQuest.

aAnnual licence fee of $10,600!
b21,000+ citations.
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Estimation via MML

• Maximum marginal likelihood (MML) estimation [c.f. joint maximum
likelihood (JML)] requires an additional assumption: zs

iid∼ N(0, 1).

• Then the MML involves maximisation of the likelihood

L(θ) =
n∏

s=1

∫ p∏
i=1

πsi(z,θ)ysi
(
1 − πsi(z,θ)

)1−ysiϕ(zs) dzs

where ϕ(θs) is the standard normal density function.
• This intractable integral is usually overcome using quadrature rules.
• Some remarks:

◦ It can be shown that bias is of O(n−1), so in finite samples the bias is
typically non-zero (Lord, 1986), though generally less biased than JML.

◦ Parameters are consistent only when model is correctly specified (Bock &
Aitkin, 1981).

◦ MML is more robust to sample size variations and provides more stable item
parameter estimates (Engelen, 1987).
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{ltm} R package

The {ltm} package is available on CRAN. Example using Law School
Admission Test (LSAT) from the US.

# install.packages("ltm")
library(ltm)
head(LSAT) # contained within {ltm}

Item 1 Item 2 Item 3 Item 4 Item 5
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 1
5 0 0 0 0 1
6 0 0 0 0 1
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{ltm} R package (cont.)
Fit a 2PL model

(fit <- ltm(LSAT ~ z1, IRT.param = TRUE))

Call:
ltm(formula = LSAT ~ z1, IRT.param = TRUE)

Coefficients:
Dffclt Dscrmn

Item 1 -3.360 0.825
Item 2 -1.370 0.723
Item 3 -0.280 0.890
Item 4 -1.866 0.689
Item 5 -3.124 0.657

Log.Lik: -2466.653

14 / 27



{ltm} R package (cont.)
Plot Item Characteristic Curves (ICC)

plot(fit)
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{ltm} R package (cont.)
Plot Item Information Curves (IIC)

plot(fit, type = "IIC")
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{ltm} R package (cont.)
Fit Rasch models

# constr sets the (common) discrimination parameter to 1
(fit <- rasch(LSAT, constr = cbind(length(LSAT) + 1, 1)))

Call:
rasch(data = LSAT, constraint = cbind(length(LSAT) + 1, 1))

Coefficients:
Dffclt.Item 1 Dffclt.Item 2 Dffclt.Item 3

-2.872 -1.063 -0.258
Dffclt.Item 4 Dffclt.Item 5 Dscrmn

-1.388 -2.219 1.000

Log.Lik: -2473.054
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Bias problem

In practice, sample size can be limited.
• Small-scale educational assessments, or
• Pilot studies (before deploying the test proper).
Standard IRT model estimates can be biased due to small sample sizes. We
explore an empirical bias adjustment method to mitigate bias issues.
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Sources of (parameter) bias

Besides small sample sizes…
• Departure from normality, e.g. [can be treated using robust ML]

◦ skewed latent traits (Wall et al., 2012); or
◦ zero-inflated distributions (Wall et al., 2015).

• Model misspecification
◦ Incorrect functional form (e.g. 2PL instead of 3PL)
◦ Dimensionality (assuming unidimensional model for multidimensional data),

model incorrectly assumes all items measure a single common trait when
there are multiple underlying abilities

• Differences in response styles. E.g. careless respondents (Hong & Cheng,
2019) or tendency to use extreme categories

• Etc.
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Bias correction

θ̂ − θ̃ = BG(θ0) := EG (θ̂ − θ0)

estimator
improved
estimator bias

function

possibly
intractable unknown

true value

Requirements

Method Model BG(θ0) Type E(·) ∂· θ̂

1 Asymptotic bias correction full analytical explicit 3 3 3
2 Adjusted score functions full analytical implicit 3 3 7
3 Bootstrap partial simulation explicit 7 7 3
4 Jackknife partial simulation explicit 7 7 3
5 Indirect inference full simulation implicit 7 7 3
6 Explicit RBM partial analytical explicit 7 3 3
7 Implicit RBM partial analytical implicit 7 3 7

1–Efron (1975), Cordeiro and McCullagh (1991); 2–Firth (1993), Kosmidis and Firth
(2009); 3–Efron and Tibshirani (1994), Hall and Martin (1988); 4–Quenouille (1956),
Efron (1982); 5–Gourieroux et al. (1993), MacKinnon and Smith Jr (1998)
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Empirical bias reducing adjustments

• Kosmidis and Lunardon (2024) introduces a novel general framework for
reducing the bias in M-estimation, which is derived from asymptotically
unbiased estimating functions.

• Briefly, θ̂ is an M-estimator if θ̂ = argminθ
∑n

s=1 ρs(θ), or results from
the solution (van der Vaart, 1998) of

n∑
s=1

ψs(θ) = 0.

[E.g. maximum likelihood: ψs(θ) = ∇ log Ls(θ).]
• For M-estimators, it is possible to write down the bias function as

EG(θ̂ − θ0) = b(θ0) + O(n−3/2),

where b(θ0) may be approximated empirically by a function of
derivatives of ψs(θ).

• Then, a reduced-bias estimator is simply θ̂ − b(θ̂).
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Implicit reduced bias M-estimators (iRBM)
• The estimator θ̃(iRBM) is obtained from

θ̃(iRBM) = argmax
θ

{
log L(θ)− 1

2 tr
[
j(θ)−1e(θ)

]}
, where

◦ j(θ) = −
∑n

s=1 ∇2 log Ls(θ) is the observed information matrix,
◦ e(θ) =

∑n
s=1 ∇ log Ls(θ)∇ log Ls(θ)⊤ is the cross-products of the scores.

• The iRBM estimator is consistent and asymptotically normal, i.e.
√

n(θ̃(iRBM) − θ0)
D−→ N

(
0, j(θ0)

−1e(θ0)j(θ0)
−⊤).

and has smaller bias than the M-estimator θ̂.
• Components of the estimated θ may “blow up” under certain data

configurations (e.g. perfect separation). To mitigate this, a shrinkage
factor can be applied to obtain a penalised iRBM estimator from

θ̃(iRBMp) = argmax
θ

{
log L(θ)− 1

2 tr
[
j(θ)−1e(θ)

]
− 1

n∥θ∥
2
}
.
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Explicit reduced bias M-estimators (eRBM)

• Another estimator with the same bias properties as the iRBM is the
eRBM, which is obtained via

θ̃(eRBM) = θ̂ + j(θ̂)−1A(θ̂),

where
A(θ̂) = −1

2∇ tr
{

j(θ)−1e(θ)
} ∣∣∣∣

θ=θ̂

.

• Operationally the eRBM is simpler, though requiring accurate
computation of the bias term to be effective (usually involving numerical
routines).

• One downside: No saving infinite estimates.

23 / 27



Explicit reduced bias M-estimators (eRBM)

• Another estimator with the same bias properties as the iRBM is the
eRBM, which is obtained via

θ̃(eRBM) = θ̂ + j(θ̂)−1A(θ̂),

where
A(θ̂) = −1

2∇ tr
{

j(θ)−1e(θ)
} ∣∣∣∣

θ=θ̂

.

• Operationally the eRBM is simpler, though requiring accurate
computation of the bias term to be effective (usually involving numerical
routines).

• One downside: No saving infinite estimates.

23 / 27



Introduction

Estimation, bias, and correction

Simulation study

Conclusions



Simulation setup

1. n ∈ {10, 25, 50, 100, 250, 500, 1000}
2. p ∈ {5, 10, 15}
3. Departure from normality:

◦ z ∼ N(0, 1)
◦ z ∼ t5
◦ z ∼ Beta(2, 5) (centred and scaled) 0
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Simulation results
Effects of sample size and no. of items
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Simulation results
Effects of sample size and departure from normality
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Conclusions
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• Small sample size and departure from normality can lead to bias in the
parameter estimates of IRT models.

• The iRBM and eRBM estimators are effective in reducing bias for the
2PL IRT model in small samples when the normality assumption holds.

• Way forward:
◦ Comparison to other bias reduction methods (e.g. bootstrap, jackknife, etc.).
◦ Investigate the performance of the iRBM and eRBM estimators in more

complex IRT models (3PL and multidimensional IRT models).
◦ Refine simulations to include more complex departures from normality.
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End

Thank you!
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