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Introduction
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Linear regression

o Consider a set of data points {(y1,x1), ..., (Vn, Xn)}

e A model is linear if the relationship between y; and the independent
variables is linear.
> yi=po+bixit+e V
> yi = Bo+ Buxi+ Baxi + e
>y = Box T e X
> In other words, the equations must be linear in the parameters.
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Linear regression

e Definition (The linear regression model)

yi = f(x) + e

yi € R, real-valued observations
xj € X, a set of characteristics for unit (1)
f € F, a vector space of functions over the set X
(€1,...,€n) ~ N(O, W)

i=1,...,n

Note: For iid observations, W = 9l,,. In general, W = (v;).
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Linear regression
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Estimation methods

How to pick the best line from the bag of stuff?

e Many ways - Least squares, maximum likelihood, Bayesian...

e When dimensionality is large, may overfit. Solutions:

» Dimension reduction
» Random effects models
» Regularization

...all require additional assumptions

o |-priors
An l-prior on f is a distribution 7 on f such that its covariance matrix
is the Fisher information of f. Also, assign a “best guess” on the prior
mean, e.g. fo = 0.
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Example: multiple regression

f
—
y=a+XB8+¢€
e~ N(0,%11,)

We know from linear regression theory that /[3] = ¢’X T X. An I-prior on 3
is then

B ~ N(Bo, N*yXTX).
Equivalently,
B =B+ \X"w
w ~ N(0,9l,).
Thus, an l-prior on f is
f=a+XBy+AXX"w
w ~ N(0,l1,).
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|-prior theory

Inner products
Functional vector spaces

_ Kernel methods
Reproducing kernels

Hilbert spaces Gaussian random vectors

|-prior theory
Fisher Information
Krein spaces

Means of random functions

Feature maps . .
P Variances of random functions

Moore-Aronszajn Theorem .
J Random functions
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Definitions & theorem
e Definition (Inner products)
Let F be a vector space R. A function (-,-)r : F x F — R is said to
be an inner product on F if all of the following are satisfied:
> Symmetry: (f,g)r = (g,f)F
> Linearity: (afy + bf, g)r = a(f1,8)r + b{f2, &) F
» Non-degeneracy: (f,g)r=0= =0
for all f, fi,f,g € F and a, b € R. Additionally, an inner product is
positive definite (negative definite) if (f,f)z > 0 (< 0). An inner
product is indefinite if it is neither positive nor negative definite.

¢ Definition (Hilbert space)
A positive definite inner product space which is complete, i.e.
contains the limits of all Cauchy sequences.

¢ Definition (Krein space)
An (indefinite) inner product space which generalizes Hilbert spaces
by dropping the positive definite restriction.
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Definitions & theorem

e Definition (Kernels)
Let X be a non-empty set. A function h: X x X — R is called a
kernel if there exists a Hilbert space F and a map ¢ : X — F such
that Vx,x' € X,

h(x, x") = (¢(x), ¢(x)).

e Definition (Reproducing kernels)
Let F be a Hilbert/Krein space of functions over a non-empty set X.
A function h: X x X — R is called a reproducing kernel of F, and F
a RKHS/RKKS, if h satisfies

» Vx e X, h(-,x)€F
» Vx e X, feF, (f,h(,x)r=f(x).

e Kernel algorithms have many important uses in Machine Learning
literature, such as pattern recognition, kernel PCA, finding distances
of means in feature space, and many more.
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Definitions & theorem

e Theorem (Gaussian |-priors) [Bergsma, 2014]
For the linear regression model (1), let F be the RKKS with kernel

h: X x X — R. Then, assuming it exists, the Fisher information for
f is given by

ITF1(xi, xi) ZZwk/h xi, i) h(x}, xi).

k=1 I=1

Let m be a Gaussian I-prior on f with prior mean fy and variance I[f].
Then 7 is called an I-prior for f, and a random vector f ~ 7 has the
random effect representation

F(xi) = folxi) + > h(xi, xi)wi
k=1
(Wi, ..., wp) ~ N(O,W).
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Back to the multiple regression example

e We saw the I-prior method applied to multiple regression:
folx;) (YR
——N— /--—/ﬁF———\
f(xi) =a+xiBy + AMXX")jw
w:

— (Whsee s W) ~ N(O,1,).
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Back to the multiple regression example

e We saw the I-prior method applied to multiple regression:
fo(x;) > k=1 h(xi Xk ) wi
— —N—
f(xi) = a+xBp + AXXT)w
w= (wq,...,wp) ~ N(0,¢l,).

e Choose different RKHS/RKKS F and corresponding h to suit the
type/characteristic of the xs in order to do regression modelling.
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Back to the multiple regression example

e We saw the I-prior method applied to multiple regression:
fo(x:) D h—1 h(xixi)wi
—_—— ——N
f(xi) = a+xiBg + MXXT)w
w= (wq,...,wp) ~ N(0,¢l,).

e Choose different RKHS/RKKS F and corresponding h to suit the
type/characteristic of the xs in order to do regression modelling.

EEAA
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Toolbox
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of RKHS/RKKS

X={x;}| Characteristic/Uses Vector space F | Kernel h(x;, xk)

1) Categorical covariates; Ii=x] _ 1 where pi =
Nominal | 2) In a multilevel setting, | Pearson IP‘)? ’

Xx; = group no. of unit i. [X = x]

As in classical regression,
Real x; = real-valued covariate | Canonical X X

associated with unit /.

As in (1-dim) smoothing, | Fractional

(1-dim) smoothing - bl a2 — s — 2

Real x; = data point associated | Brownian

with observation y;.

Motion (FBM)

with v € (0,1)

e We can construct new RKHS/RKKS from existing ones.

» Example (ANOVA RKKS) Set of x; = (x1;, x2;) of Nominal + Real
characteristics. Then

Hazig Jamil (LSE)

h(xi, x{) = hy(xai, x{;) + ho(xai, x3;) + h (17, x1;) ho (xai, X3;)
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Estimation methods

Parameters to be estimated

e Let's choose a prior mean of zero (or set an overall constant/intercept
to be estimated).

e For the I-prior linear model

vi=o+ > ha(xi X Wi + €
k=1
e ~ N(0, %) (2)
w; ~ N(0, )

i=1,...,n,
the parameters to be estimated are 8 = (a, A\, ).

e )\ is introduced to resolve the arbitrary scale of an RKKS/RKHS F
over a set X'. Number of A parameters = number of kernels used,
not interactions nor covariates.
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EM algorithm

e For the |-prior model in (2), treat the w;s as missing.

e The distributions are easy enough to obtain:

> y~ N(a,V,), where V, := HyWH, + ¥ !
» w~ N(O,W)

- () ~((6) (5 )
> wly ~ N (WH\V My — ), V1)

where Hy(7,/) = hy(x;, x;) and W = 9l
e E-step: Calculate Q(8) = Ey [log f(y,w; 0)]y; 0:].

e M-step: 6;11 < argmaxg Q(0).
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Estimation methods
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Generalised least square estimator for «

Write Model (2) as y = al + Hyw + €, where y ~ N(c, V).

Assume values for A and v are known, and thus too
V,(\,¢) = H\WH) + w1,

GLS estimator for « is

a=1Tv')taTv y).

This turns out to be identical to the MLE.
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Estimation methods
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Exponential family EM algorithm

e Consider a density function belonging to the exponential family with
the (canonical) form fx(x; ) = exp[@ - T(x) — A(0)]h(x).
» The MLE is found by solving the set of equations T(x) = A’(0).
> It is also know that A'(0) = E[T(x); 0].

e In the EM algorithm, the “full” data is x = (y,w). The E-step
involves calculating Q(@), and for the exponential family, this turns

out to be
Q(8) = Ew [0 - T(y,w) — A(8) + log h(y, w)y; 0:].
e Maximising this over 8, we arrive at the FOC

Q'(6) =Ew[0-T(y,w)ly;8:] - A'() =0
= Ew [0 - T(y,w)|y; 0:] = E[T(y,w); 6].

17 /27
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Full Bayesian approach

e Assign prior distributions to the parameters, for example
» a~ N(a, b?)
» A~ U(0,¢)
» Y ~T(d,e)

e Draw from the posterior densities f(6|y) using Metropolis-Hastings
algorithm. Estimates for the parameters are the posterior means.

e Easy to implement in R using JAGS (rjags or R2jags), but...
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Example: Simple linear regression

I-prior fitted line

Classical model “7
yi = Bo + Bixi + € -]
ei ~ N(0,0) o
< 4
I-prior model @
T T T T T T
0 1 2 3 4 5
n X
Vi=a« + § h)\(X' Xk)Wk + €; Comparison of predicted values
[ 1 1
k=1 N
-1 R
e ~ N(0, 1) i
Wi ~ N(O’¢) R
< 4
T T T T T
4 2 0 2 4

hy is the Canonical kernel

Classical model
MSE(classical) = 1.770 ~ MSE(l-prior) = 1.770
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Examples of |-prior modelling
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Example: 1-dimensional smoothing

I-prior fitted line

Classical model

Vi = Bo + Bixi + B2x? + Bax?
ei ~ N(0,0)

I-prior model

n
yi=a+ Z hy (Xiy xi ) wic + €

k=1 B
& ~ N(0,477)

hy is the FBM kernel

Classical model

MSE(classical) = 0.987  MSE(I-prior) = 0.836
Haziq Jamil (LSE) |-prior regression
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Examples of |-prior modelling
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Example: Multilevel modelling

I-prior fitted lines

Classical model

10
1

Yij = Boj + Bujxij + €jj ® 1

(50j>NN (50) <¢o ¢01> )
b1 B1) \¢o1 &1

eij ~ N(0,0)

0
1

-5
L

-10

I-prior model x

Comparison of predicted values

n
Vi=oa+ Z h)\(X,',Xk)Wk + €;

€j ~ N(Oﬂ/}_l)
Wi ~ N(OJ/J)

Classical model

hy is the ANOVA kernel MSE(classical) = 0.227  MSE(l-prior) = 0.226
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Examples of |-prior modelling
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Example: Longitudinal modelling

I-prior fitted lines
©

Classical model

— Treatment A (x=0)
— Treatment B (x=1)

Yij = Boj + Bijtij + Paxij + €jj

(50j>NN (50) <¢o ¢01>
B p1)’ \Po1 ¢1 °

eij ~ N(0,0) ?

Response

I-prior model Occasion

Comparison of predicted values

10
1

n
Vi=oa+ Z h)\(X,',Xk)Wk + €;

k=1 H
-1 T
€ ~~ N(Oa 1/} ) w
w; ~ N(O,i/]) I5 tl) ; 1|o
Classical model
hy is the ANOVA + Pearson kernel MSE(classical) = 0.138  MSE(l-prior) = 0.114
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Further work
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Further work: Structural Equation Models

e The 1-factor model

X,-J-:/Lj-i-)\jfi-i-(s,'j
fi ~ N(0,1)
djj ~ N(0,6;)

e Relationship to longitudinal random intercept model:
> Set pj = p, Vj.
» Set \; =1, , Vj and estimate variance of f; instead.
» Set 0; =0, Vj We already know how to estimate this model using
I-prior.

e Further work:

» Uses of this very restricted CFA model? Rasch model?
» Post estimation work, e.g. obtaining factor scores.
» Can we estimate both the Ajs and f; simultaneously?
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Further work
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Further work: Structured error covariances

e Sometimes, the responses may be correlated in a way that the model
specification can't account for completely. Extend model to allow for
dependence between errors, such as autocorrelations.

e Example: AR(1) covariance matrix with equal gaps between
observations:

1 ¢) ¢2 . ¢n—1

s e bt

_ 1 R n—
Y- 1-¢2 ¢ ¢ : - ’ :
d)n.—l ¢n.—2 ¢n.—3 o 1

e Others: Heteroskedastic errors?
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Further work
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Further work: Logistic models
e Extending the |-prior methodology to GLMs, e.g. logit models:
yi ~ Bern(m;)

n
logit m; = o + Z h (X, xic ) wi
k=1
w; ~ N(0, (1 — 7))
i=1,...,n

i.e. putting an Il-prior on the linear predictor, and setting the Fisher
information as the variance.

o Difficulties faced
» Unable to estimate this model using JAGS due to a circular
dependence of the parameters.
» Performing ML yields a high-dimensional intractable integral. Poor
results from approximation methods like Laplace and Gauss-Hermite
Quadrature.
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End

Summary

e The |-prior methodology is a modelling technique that guards against
overfitting linear models when dimensionality is large relative to
sample size, with advantages such as

» Model parsimony
» Requires no additional assumptions
» Simpler estimation

e Many models shown to work with using I-priors such as multiple
regression, smoothing models, random effects models and growth
curve models.

e Areas of research include

» Extension to GLMs
» Structural Equation Models
» Models with structured error covariances

Hazig Jamil (LSE) |-prior regression 19 May 2015 26 / 27



End

Thank you!
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