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Linear regression

• Consider a set of data points {(y1, x1), . . . , (yn, xn)}.

• A model is linear if the relationship between yi and the independent
variables is linear.

I yi = β0 + β1xi + εi 3
I yi = β0 + β1xi + β2x

2
i + εi 3

I yi = β0x
β1+2β2

i + εi 7
I In other words, the equations must be linear in the parameters.
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Linear regression

• Definition (The linear regression model)

yi = f (xi ) + εi

yi ∈ R, real-valued observations

xi ∈ X , a set of characteristics for unit i

f ∈ F , a vector space of functions over the set X
(ε1, . . . , εn) ∼ N(0,Ψ−1)

i = 1, . . . , n

(1)

Note: For iid observations, Ψ = ψIn. In general, Ψ = (ψij).

Haziq Jamil (LSE) I-prior regression 19 May 2015 4 / 27



Introduction I-prior theory Estimation methods Examples of I-prior modelling Further work End

Linear regression

THE 
BIG BAG 

OF 
LINES
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Estimation methods

How to pick the best line from the bag of stuff?

• Many ways - Least squares, maximum likelihood, Bayesian...

• When dimensionality is large, may overfit. Solutions:
I Dimension reduction
I Random effects models
I Regularization

...all require additional assumptions

• I-priors
An I-prior on f is a distribution π on f such that its covariance matrix
is the Fisher information of f . Also, assign a “best guess” on the prior
mean, e.g. f0 = 0.
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Example: multiple regression

y =

f︷ ︸︸ ︷
α + Xβ + ε

ε ∼ N(0, ψ−1In)

We know from linear regression theory that I [β] = ψXTX. An I-prior on β
is then

β ∼ N(β0, λ
2ψXTX).

Equivalently,

β = β0 + λXTw

w ∼ N(0, ψIn).

Thus, an I-prior on f is

f = α + Xβ0 + λXXTw

w ∼ N(0, ψIn).
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I-prior theory

Functional vector spaces

Reproducing kernels

Hilbert spaces

Krein spaces

Kernel methods

Fisher Information

Moore-Aronszajn Theorem

Means of random functions

Feature maps Variances of random functions

Inner products

Random functions

Gaussian random vectors
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Definitions & theorem
• Definition (Inner products)

Let F be a vector space R. A function 〈·, ·〉F : F × F → R is said to
be an inner product on F if all of the following are satisfied:

I Symmetry: 〈f , g〉F = 〈g , f 〉F
I Linearity: 〈af1 + bf2, g〉F = a〈f1, g〉F + b〈f2, g〉F
I Non-degeneracy: 〈f , g〉F = 0⇒ f = 0

for all f , f1, f2, g ∈ F and a, b ∈ R. Additionally, an inner product is
positive definite (negative definite) if 〈f , f 〉F ≥ 0 (≤ 0). An inner
product is indefinite if it is neither positive nor negative definite.

• Definition (Hilbert space)
A positive definite inner product space which is complete, i.e.
contains the limits of all Cauchy sequences.

• Definition (Krein space)
An (indefinite) inner product space which generalizes Hilbert spaces
by dropping the positive definite restriction.
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Definitions & theorem

• Definition (Kernels)
Let X be a non-empty set. A function h : X × X → R is called a
kernel if there exists a Hilbert space F and a map φ : X → F such
that ∀x , x ′ ∈ X ,

h(x , x ′) = 〈φ(x), φ(x ′)〉.

• Definition (Reproducing kernels)
Let F be a Hilbert/Krein space of functions over a non-empty set X .
A function h : X ×X → R is called a reproducing kernel of F , and F
a RKHS/RKKS, if h satisfies

I ∀x ∈ X , h(·, x) ∈ F
I ∀x ∈ X , f ∈ F , 〈f , h(·, x)〉F = f (x).

• Kernel algorithms have many important uses in Machine Learning
literature, such as pattern recognition, kernel PCA, finding distances
of means in feature space, and many more.
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Definitions & theorem

• Theorem (Gaussian I-priors) [Bergsma, 2014]
For the linear regression model (1), let F be the RKKS with kernel
h : X × X → R. Then, assuming it exists, the Fisher information for
f is given by

I [f ](xi , x
′
i ) =

n∑
k=1

n∑
l=1

ψklh(xi , xk)h(x ′i , xl).

Let π be a Gaussian I-prior on f with prior mean f0 and variance I [f ].
Then π is called an I-prior for f , and a random vector f ∼ π has the
random effect representation

f (xi ) = f0(xi ) +
n∑

k=1

h(xi , xk)wk

(w1, . . . ,wn) ∼ N(0,Ψ).
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Back to the multiple regression example

• We saw the I-prior method applied to multiple regression:

f (xi ) =

f0(xi )︷ ︸︸ ︷
α + xiβ0 +

∑n
k=1 h(xi ,xk )wk︷ ︸︸ ︷
λ(XXT )iw

w := (w1, . . . ,wn) ∼ N(0, ψIn).

• Choose different RKHS/RKKS F and corresponding h to suit the
type/characteristic of the xs in order to do regression modelling.

THE 
BIG BAG 

OF 
LINES

BAG OF 
 STRAIGHT 

LINES

BAG OF 
SMOOTH 

LINES

BAG OF 
LINES FOR 

EACH 
GROUP
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Toolbox of RKHS/RKKS

X ={xi} Characteristic/Uses Vector space F Kernel h(xi , xk)

Nominal
1) Categorical covariates;
2) In a multilevel setting,
xi = group no. of unit i .

Pearson
I[xi=xk ]

pi
− 1 where pi =

P[X = xi ]

Real
As in classical regression,
xi = real-valued covariate
associated with unit i .

Canonical xixk

Real
As in (1-dim) smoothing,
xi = data point associated
with observation yi .

Fractional
Brownian
Motion (FBM)

|xi |2γ+|xk |2γ−|xi−xk |2γ
with γ ∈ (0, 1)

• We can construct new RKHS/RKKS from existing ones.

I Example (ANOVA RKKS) Set of xi = (x1i , x2i ) of Nominal + Real
characteristics. Then

h(xi , x
′
i ) = h1(x1i , x

′
1i ) + h2(x2i , x

′
2i ) + h1(x1i , x

′
1i )h2(x2i , x

′
2i )
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Parameters to be estimated

• Let’s choose a prior mean of zero (or set an overall constant/intercept
to be estimated).

• For the I-prior linear model

yi = α +
n∑

k=1

hλ(xi , xk)wk + εi

εi ∼ N(0, ψ−1)

wi ∼ N(0, ψ)

i = 1, . . . , n,

(2)

the parameters to be estimated are θ = (α, λ, ψ)T .

• λ is introduced to resolve the arbitrary scale of an RKKS/RKHS F
over a set X . Number of λ parameters = number of kernels used,
not interactions nor covariates.
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EM algorithm

• For the I-prior model in (2), treat the wi s as missing.

• The distributions are easy enough to obtain:
I y ∼ N(α,Vy ), where Vy := HλΨHλ + Ψ−1

I w ∼ N(0,Ψ)

I

(
y
w

)
∼ N

((
α
0

)
,

(
Vy HλΨ

ΨHλ Ψ

))
I w|y ∼ N

(
ΨHλV−1y (y −α),V−1y

)
where Hλ(i , j) = hλ(xi , xj) and Ψ = ψIn.

• E-step: Calculate Q(θ) = Ew [log f (y,w;θ)|y;θt ].

• M-step: θt+1 ← arg maxθ Q(θ).
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Generalised least square estimator for α

• Write Model (2) as y = α1 + Hλw + ε, where y ∼ N(α,Vy ).

• Assume values for λ and ψ are known, and thus too
Vy (λ, ψ) = HλΨHλ + Ψ−1.

• GLS estimator for α is

α̂ = (1TV−1y 1)−1(1TV−1y y).

• This turns out to be identical to the MLE.
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Exponential family EM algorithm

• Consider a density function belonging to the exponential family with
the (canonical) form fX(x;θ) = exp[θ · T(x)− A(θ)]h(x).

I The MLE is found by solving the set of equations T(x) = A′(θ).
I It is also know that A′(θ) = E[T(x);θ].

• In the EM algorithm, the “full” data is x = (y,w). The E-step
involves calculating Q(θ), and for the exponential family, this turns
out to be

Q(θ) = Ew [θ · T(y,w)− A(θ) + log h(y,w)|y;θt ] .

• Maximising this over θ, we arrive at the FOC

Q ′(θ) = Ew [θ · T(y,w)|y;θt ]− A′(θ) = 0

⇒ Ew [θ · T(y,w)|y;θt ] = E[T(y,w);θ].
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Full Bayesian approach

• Assign prior distributions to the parameters, for example
I α ∼ N(a, b2)
I λ ∼ U(0, c)
I ψ ∼ Γ(d , e)

• Draw from the posterior densities f (θ|y) using Metropolis-Hastings
algorithm. Estimates for the parameters are the posterior means.

• Easy to implement in R using JAGS (rjags or R2jags), but...
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Example: Simple linear regression

Classical model

yi = β0 + β1xi + εi

εi ∼ N(0, σ)

I-prior model

yi = α +
n∑

k=1

hλ(xi , xk)wk + εi

εi ∼ N(0, ψ−1)

wi ∼ N(0, ψ)

hλ is the Canonical kernel

MSE(classical) = 1.770 MSE(I-prior) = 1.770
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Example: 1-dimensional smoothing

Classical model

yi = β0 + β1xi + β2x
2
i + β3x

3
i

εi ∼ N(0, σ)

I-prior model

yi = α +
n∑

k=1

hλ,γ(xi , xk)wk + εi

εi ∼ N(0, ψ−1)

wi ∼ N(0, ψ)

hλ,γ is the FBM kernel

MSE(classical) = 0.987 MSE(I-prior) = 0.836
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Example: Multilevel modelling

Classical model

yij = β0j + β1jxij + εij(
β0j
β1j

)
∼ N

((
β0
β1

)
,

(
φ0 φ01
φ01 φ1

))
εij ∼ N(0, σ)

I-prior model

yi = α +
n∑

k=1

hλ(xi , xk)wk + εi

εi ∼ N(0, ψ−1)

wi ∼ N(0, ψ)

hλ is the ANOVA kernel MSE(classical) = 0.227 MSE(I-prior) = 0.226
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Example: Longitudinal modelling

Classical model

yij = β0j + β1j tij + β3xij + εij(
β0j
β1j

)
∼ N

((
β0
β1

)
,

(
φ0 φ01
φ01 φ1

))
εij ∼ N(0, σ)

I-prior model

yi = α +
n∑

k=1

hλ(xi , xk)wk + εi

εi ∼ N(0, ψ−1)

wi ∼ N(0, ψ)

hλ is the ANOVA + Pearson kernel MSE(classical) = 0.138 MSE(I-prior) = 0.114
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Further work: Structural Equation Models

• The 1-factor model

xij = µj + λj fi + δij

fi ∼ N(0, 1)

δij ∼ N(0, θj)

• Relationship to longitudinal random intercept model:
I Set µj = µ, ∀j .
I Set λj = 1, , ∀j and estimate variance of fi instead.
I Set θj = θ, ∀j We already know how to estimate this model using

I-prior.

• Further work:
I Uses of this very restricted CFA model? Rasch model?
I Post estimation work, e.g. obtaining factor scores.
I Can we estimate both the λjs and fi simultaneously?
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Further work: Structured error covariances

• Sometimes, the responses may be correlated in a way that the model
specification can’t account for completely. Extend model to allow for
dependence between errors, such as autocorrelations.

• Example: AR(1) covariance matrix with equal gaps between
observations:

Ψ =
σ2

1− φ2


1 φ φ2 · · · φn−1

φ 1 φ · · · φn−2

φ2 φ 1 · · · φn−3

...
...

...
. . .

...
φn−1 φn−2 φn−3 . . . 1


• Others: Heteroskedastic errors?
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Further work: Logistic models

• Extending the I-prior methodology to GLMs, e.g. logit models:

yi ∼ Bern(πi )

logit πi = α +
n∑

k=1

hλ(xi , xk)wk

wi ∼ N(0, πi (1− πi ))

i = 1, . . . , n

i.e. putting an I-prior on the linear predictor, and setting the Fisher
information as the variance.

• Difficulties faced
I Unable to estimate this model using JAGS due to a circular

dependence of the parameters.
I Performing ML yields a high-dimensional intractable integral. Poor

results from approximation methods like Laplace and Gauss-Hermite
Quadrature.
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Summary

• The I-prior methodology is a modelling technique that guards against
overfitting linear models when dimensionality is large relative to
sample size, with advantages such as

I Model parsimony
I Requires no additional assumptions
I Simpler estimation

• Many models shown to work with using I-priors such as multiple
regression, smoothing models, random effects models and growth
curve models.

• Areas of research include
I Extension to GLMs
I Structural Equation Models
I Models with structured error covariances
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End

Thank you!

Haziq Jamil (LSE) I-prior regression 19 May 2015 27 / 27


	Introduction
	Introduction

	I-prior theory
	Definitions & theorem

	Estimation methods
	Estimation methods

	Examples of I-prior modelling
	Simple linear regression
	1-dimensional smoothing
	Multilevel modelling
	Longitudinal modelling

	Further work
	Structural Equation Models
	Models with structured error covariances
	Logistic models

	End

