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Introduction

Regression analysis is one of the most frequently used statistical techniques. It aims to build up an explicit
relationship between one response variable, often denoted as y, and one or several explanatory variables, often
denoted as x1, . . . , xp.

Alternative nomenclature for the variables:

y variable x variable
Response variable Explanatory variables

Dependent variable Independent variable
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y variable x variable
Output variable Input variable

Covariates
Regressors

GOAL:

• To understand how y depends on x1, . . . , xp (inference)
• To predict unobserved y value based on observed x1, . . . , xp

Example

Look at this data set. It contains information about various cars and their related variables (a data frame
with 32 observations on 11 (numeric) variables).

• [, 1] mpg Miles/(US) gallon
• [, 2] cyl Number of cylinders
• [, 3] disp Displacement (cu.in.)
• [, 4] hp Gross horsepower
• [, 5] drat Rear axle ratio
• [, 6] wt Weight (1000 lbs)
• [, 7] qsec 1/4 mile time
• [, 8] vs Engine (0 = V-shaped, 1 = straight)
• [, 9] am Transmission (0 = automatic, 1 = manual)
• [,10] gear Number of forward gears
• [,11] carb Number of carburetors

mtcars

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
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## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

summary(mtcars)

## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000

Let’s concentrate on two variables: mpg and wt. Plot them:

ggplot(mtcars, aes(x = wt, y = mpg)) +
geom_point() +
# geom_abline(slope = -6, intercept = 42, linetype = "dashed", col = "red",
# alpha = 0.8) +
# geom_abline(slope = -7, intercept = 39, linetype = "dashed", col = "blue",
# alpha = 0.8) +
theme_bw()
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Questions of interest:

1. What is the general trend of mpg against wt?
2. How can we draw the line of best fit through the data points?
3. How do we explain the points that do not lie exactly on the line?

The linear regression model

For a set of response variables y = {y1, . . . , yn} and corresponding explanatory variables xk = {x1k, . . . , xnk}
for k = 1, . . . , p, the linear regression model is given by

yi = β0 + β1xi1 + · · · + βpxip + ϵi

ϵi ∼ N(0, σ2) (iid)
for i = 1, . . . , n

Using matrix notation, we can write this as

y1
...

yn

 =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

. . .
...

1 xn1 xn2 · · · xnp




β0
β1
...

βp

 +


ϵ1
ϵ2
...

ϵn


or simply
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y = Xβ + ϵ

where y is an n × 1 vector of responses, X is an n × (p + 1) matrix of observations (sometimes called the
design matrix), β is a p × 1 vector of coefficients, and ϵ is an n × 1 vector of errors.

The errors essentially measure the random deviation or random noise that the observation makes from the
‘true’ model.

Assumptions

• E(ϵi) = 0, ∀i.
• Var(ϵi) = σ2, ∀i.
• Cov(ϵi, ϵj) = 0, ∀i ̸= j.
• We assume that the errors are normally distributed.
• We assume that the explanatory variables are fixed (non-random).

Note that The model is linear in the parameters β0, . . . , βp. This means we cannot have a model with β2
1 ,

or βq
k or the like. However, it is fine to have the covariates x2

k, x3
k or any transformation of them.

Estimation

In order to proceed with either inference or prediction, we need to estimate the model. This means estimating
the unknown values of the parameters (collectively called θ) of the model, which are

θ = {β0, β1, . . . , βp, σ2}.

There are several methods available for estimating the linear regression model. Among them is the least
squares method. Essentially, the line that fits the best through all the data points should have the smallest
total error.

Let β̂ be an estimate of β. Note that we use hats to represent estimates of coefficients/parameters. Consider
the sum of the squared errors

n∑
i=1

ϵ2
i =

n∑
i=1

(yi − β0 + β1xi1 − · · · − βpxip)2

= ∥y − Xβ∥2

By definition, the least squares estimator (LSE) for β minimises the sum of squared errors, i.e.

β̂ = arg min ∥y − Xβ∥2

To solve for β, consider

∥y − Xβ∥2 = ∥y − Xβ̂ + Xβ̂ − Xβ∥2

= ∥y − Xβ̂∥2 + ∥X(β̂ − β)∥2 + 2(β̂ − β)⊤X⊤(y − Xβ̂)

Now if we choose β such that
X⊤(y − Xβ̂)
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then we have

∥y − Xβ∥2 = ∥y − Xβ̂∥2 + ∥X(β̂ − β)∥2

≥ ∥y − Xβ̂∥2

for any β, which satisfies the least squares condition. Therefore, the LSE for β must satisfy

X⊤(y − Xβ̂) = 0
X⊤y − X⊤Xβ̂ = 0

X⊤Xβ̂ = X⊤y
β̂ = (X⊤X)−1X⊤y

provided X⊤X is not singular, i.e. it is invertible.

With the knowledge of the LSE for the coefficients, and assuming that the errors are zero-meaned variables,
an estimate of the variance of the errors is given by

σ̂2 = 1
n

n∑
i=1

(yi − β̂0 − β̂1xi1 − · · · − β̂pxip)2

but usually we will use another estimator for σ2, as we will see later.

Residuals

Let ŷi = β̂0 + β̂1xi1 + · · · + β̂pxip, the predicted value for the i’th observation using estimates β̂. Residuals
are defined to be the difference between the observed value and the predicted value,

ϵ̂i = yi − ŷi

If the model is correct, then the residuals should behave like random noise!

Properties of estimator

1. The LSE for β turns out to be the maximum likelihood estimator for β too. This is easy to see:
The likelihood under the normal linear model is

L(β, σ2) = 1
σ

√
2π

exp
{

− 1
2σ2 ∥y − Xβ∥2

}
and since under the LSE, ∥y − Xβ∥2 ≥ ∥y − Xβ̂∥2, which means that the likelihood is maximised at
the LSE as well.

2. The estimator for β̂ is normally distributed with mean and variance given by

β̂ ∼ Np(β, σ2(X⊤X)−1)

which implies that the estimators for the coefficients are unbiased.
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3. The unbiased estimator for σ2 is given by the formula

σ̂2 = ∥y − Xβ̂∥2

n − p − 1

which is distributed according to a χ2 distribution with n − p − 1 degrees of freedom.

4. β̂ and σ̂2 are independent of each other.

5. The residuals have mean zero
E(ϵ̂) = E(y − Xβ̂)

= E(Xβ − Xβ̂)
= Xβ − Xβ

= 0

Inference

Interpretation of coefficients

The coefficients βj represents the ‘strength or influence’ of the variable xj on y. It is the effect on y of
changing xj by a single unit, holding the other covariates fixed.

Consider the effect of the coefficient β1. Let y(0) = β0 + β1x1 + · · · + βpxp, and also let y(1) = β0 + β1(x1 +
1) + · · · + βpxp. Since everything else cancels out, the difference between y(1) and y(0) is simply

y(1) − y(0) = β1(x1 + 1) − β1x1 = β1

As we can see, β1 represents the change in the response variable when the variable x1 is increased by one
unit, and keeping all other variables fixed. A positive value for the coefficient imparts a change in
the positive direction in the response, and vice versa. Of course, the logic is the same for all of the other
variables j = 2, 3, . . . , p.

Standard errors of coefficients

Recall that the standard deviation for each β̂j (from the normal distribution in property 2) is given by

SD(β̂j) =
√

σ2vjj

where vjj is the (j + 1, j + 1)th element of the matrix (X⊤X)−1. Notice that we do not know the true value
of σ and therefore, the standard deviation of the coefficients as well.

The standard error for each β̂j is given by

SE(β̂j) =
√

σ̂2vjj

where σ̂2 is the unbiased estimator for σ2 given in property 3 above. Essentially, by replacing the unknown
value σ2 by its estimator, we get a “estimate” of the SD which we call the standard error.
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Coefficient of determination

Introduce the decomposition

Total SS︷ ︸︸ ︷
n∑

i=1
(yi − ȳ)2 =

Regression SS︷ ︸︸ ︷
n∑

i=1
(ŷi − ȳ)2 +

Residual SS︷ ︸︸ ︷
n∑

i=1
(yi − ŷi)2

The term on the LHS is the Total Sum of Squares, which represents the total variation in the data (responses).
The first term on the RHS is called the Regression Sum of Squares, which represents the variation in the
regression model. The second term on the RHS we have seen before, called the Residual Sum of Squares,
which measures variability between predicted and observed values.

Define the coefficient of determination, as

R2 = Regression SS
Total SS = 1 − Residual SS

Total SS
R2 takes values between 0 and 1. 100R2 is the percentage of the total variation in {yi} explained by all the
regressors. Therefore, the closer R2 is to 1, the better the model agreement is.

Sometimes, the adjusted R2 value is used instead, because it has nice distributional properties (for hypoth-
esis testing)

R2
adj = 1 − Residual SS/(n − p − 1)

Total SS/(n − 1)

Roughly speaking, both should give about similar values.

Tests for single coefficients

For each coefficient βj , where j = 0, 1, . . . , p,

β̂j − βj

SE(β̂j)
∼ tn−p−1

We can then use this fact to test the hypothesis

H0 : βj = bj

H1 : βj ̸= bj

Let

T = β̂j − bj

SE(β̂j)
We reject the null hypothesis at the level α against the alternative hypothesis if |T | > tn−p−1(α/2), where
tk(α) is the top α-point of the tk distribution.

Note we can also test H0 against the alternatives

• H1 : βj > bj , and we reject the null hypothesis if T > tn−p−1(α); and
• H1 : βj < bj , and we reject the null hypothesis if T < −tn−p−1(α).

The (1 − α) confidence interval for βj is

β̂j ± tn−p−1(α/2) · SE(β̂j)

Remarks:
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• When n is large, then the t-test becomes approximately equivalent to the Z-test / Wald test (using
the normal distribution).

• We are not usually interested in testing the intercept. In most practical data applications, the intercept
is not likely to be zero as it represents the ‘average value’ of the response when all covariates are zero.

Tests for all zero-regression coefficients

Consider the hypothesis
H0 : β1 = β2 = · · · = βp = 0
H1 : Not all β1, . . . , βp are 0

Let
T =

∑n
i=1(ŷi − ȳ)2/p∑n

i=1(yi − ŷi)2/(n − p − 1)
= n − p − 1

p
· Regression SS

Residual SS

= n − p − 1
p

· R2

1 − R2

We reject the null hypothesis at the α significance level if T > Fp,n−p−1(α).

This has links to the ANOVA table which you may be familiar with:

Source d.f. Sum of squares Mean SS F-statistic

Regressors p
∑n

i=1(ŷi − ȳ)2
∑n

i=1
(ŷi−ȳ)2

p

p
∑n

i=1
(ŷi−ȳ)2

(n−p−1)
∑n

i=1
(yi−ŷi)2

Residual n − p − 1
∑n

i=1(yi − ŷi)2
∑n

i=1
(yi−ŷi)2

n−p−1
Total n − 1

∑n
i=1(yi − ȳ)2

Standardized residuals

Let H = X(X⊤X)−1X⊤, an n × n matrix. This matrix is called the projection matrix or the hat matrix
for linear regression. It has several interesting and useful properties, which we will not go into detail now.

For i = 1, . . . , n, define the standardized residuals as

êi = yi − ŷi√
σ̂2(1 − hii)

where hii is the (i, i)th entry of the matrix H. The standardized residuals then have mean zero and variance
one.

We use the standardized residuals as a means of diagnosing the fit of the linear model, and to test assump-
tions of our linear model. For instance, we can plot the standardized residuals - in a qq-plot (to test for
normality) - against covariates (to test for homo/heteroscedasticity) - against predicted values (to test for
homo/heteroscedasticity)
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Example

Let’s fit a simple linear regression model to the mtcars data set. In R, the command to fit linear regression
model is lm().

mod <- lm(formula = mpg ~ wt, data = mtcars)
summary(mod)

##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
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Let’s go through the results one by one.

Call

## Call:
## lm(formula = mpg ~ wt, data = mtcars)

This tells us that the following regression had been fitted:

mpg = β0 + β1 · wt + ϵ

Residuals

## Residuals:
## Min 1Q Median 3Q Max
## -4.5432 -2.3647 -0.1252 1.4096 6.8727

This gives us a 5-point summary of the distribution of the residuals ϵ̂i. The intention is to tell us how well
the model fits the data, but it will also be easier to diagnose model fit using residual plots.

diag.plots <- lindia::gg_diagnose(mod, plot.all = FALSE)
diag.plots <- lapply(diag.plots, function(x) x + theme_bw())
diag.plots[[2]] <- diag.plots[[2]] + geom_smooth(se = FALSE)
diag.plots[[3]] <- diag.plots[[3]] + geom_smooth(se = FALSE)
lindia::plot_all(diag.plots[1:4])
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In this case, we see some kind of curved relationship between residuals and fitted values / wt.
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Coefficients

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
## wt -5.3445 0.5591 -9.559 1.29e-10 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

This piece of information tells us that the model has been estimated to be

mpg = 37.3 − 5.3 wt

The table also shows individual hypothesis tests of significance (i.e. testing that the coefficient is non-zero)
conducted for each of the coefficients. We find that both β0 and β1 are statistically significant, with both
tests strongly rejecting the null hypothesis that β0 = 0 (p-value = < 2e16) and β1 = 0 (p-value = 1.29e−10).

What is the interpretation of the coefficient for wt? Firstly, notice that it is negative, which means that
there is an inverse relationship between the explanatory variable wt and the response variable mpg. This
makes sense, because the heavier the car is, the less fuel efficient it is. For every unit increase in wt (given
in 1000 lbs), we see on average a decrease of -5.3 miles per gallon.

Residual standard error

## Residual standard error: 3.046 on 30 degrees of freedom

This gives the estimate for σ̂, otherwise known as residual standard error. To understand why this is called
what it is, take a look at the formula. As we mentioned above, this follows a χ2 distribution with n−p−1 = 30
degrees of freedom.

Multiple R-squared

## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446

As the name states, this gives the estimate for R2 and R2
adj respectively.

F -statistic

## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

This is the piece of information which relates to testing all coefficients are non-zero simultaneously. The
F -statistic, T = 91.38 is calculated using the formula given above, and it is compared against the F1,30
distribution. We see that it gives a p-value of 1.294e − 10 which implies strongly that the null hypothesis is
rejected, concluding that at least one of the coefficients is non-zero.

Line of best fit

Using the information from the linear regression, one can produce the following table:
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knitr::kable(fortify(mod)[, -c(3:5)])

mpg wt .fitted .resid .stdresid
Mazda RX4 21.0 2.620 23.282611 -2.2826106 -0.7661677
Mazda RX4 Wag 21.0 2.875 21.919770 -0.9197704 -0.3074305
Datsun 710 22.8 2.320 24.885952 -2.0859521 -0.7057525
Hornet 4 Drive 21.4 3.215 20.102650 1.2973499 0.4327511
Hornet Sportabout 18.7 3.440 18.900144 -0.2001440 -0.0668188
Valiant 18.1 3.460 18.793254 -0.6932545 -0.2314831
Duster 360 14.3 3.570 18.205363 -3.9053627 -1.3055222
Merc 240D 24.4 3.190 20.236262 4.1637381 1.3888971
Merc 230 22.8 3.150 20.450041 2.3499593 0.7839269
Merc 280 19.2 3.440 18.900144 0.2998560 0.1001080
Merc 280C 17.8 3.440 18.900144 -1.1001440 -0.3672871
Merc 450SE 16.4 4.070 15.533127 0.8668731 0.2928865
Merc 450SL 17.3 3.730 17.350247 -0.0502472 -0.0168379
Merc 450SLC 15.2 3.780 17.083024 -1.8830236 -0.6315997
Cadillac Fleetwood 10.4 5.250 9.226650 1.1733496 0.4229607
Lincoln Continental 10.4 5.424 8.296712 2.1032876 0.7697987
Chrysler Imperial 14.7 5.345 8.718926 5.9810744 2.1735331
Fiat 128 32.4 2.200 25.527289 6.8727113 2.3349021
Honda Civic 30.4 1.615 28.653805 1.7461954 0.6103569
Toyota Corolla 33.9 1.835 27.478021 6.4219792 2.2170827
Toyota Corona 21.5 2.465 24.111004 -2.6110037 -0.8796401
Dodge Challenger 15.5 3.520 18.472586 -2.9725862 -0.9931363
AMC Javelin 15.2 3.435 18.926866 -3.7268663 -1.2441801
Camaro Z28 13.3 3.840 16.762355 -3.4623553 -1.1627910
Pontiac Firebird 19.2 3.845 16.735633 2.4643670 0.8277197
Fiat X1-9 27.3 1.935 26.943574 0.3564263 0.1224441
Porsche 914-2 26.0 2.140 25.847957 0.1520430 0.0517719
Lotus Europa 30.4 1.513 29.198941 1.2010593 0.4225427
Ford Pantera L 15.8 3.170 20.343151 -4.5431513 -1.5154971
Ferrari Dino 19.7 2.770 22.480940 -2.7809399 -0.9308693
Maserati Bora 15.0 3.570 18.205363 -3.2053627 -1.0715194
Volvo 142E 21.4 2.780 22.427495 -1.0274952 -0.3438822

We can then plot the line of best fit as follows

ggplot(mtcars, aes(x = wt, y = mpg)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
geom_segment(data = fortify(mod),

aes(x = wt, xend = wt, y = mpg, yend = .fitted),
linetype = "dashed") +

theme_bw()

## ‘geom_smooth()‘ using formula ’y ~ x’
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Exercise 1

Consider the following data set, which has observations on four variables

• LVOL logarithms of weekly sales volume
• PROMP promotion price
• FEAT feature advertising
• DISP display

foods <- as_tibble(read.table("foods.txt", header = TRUE))
foods

## # A tibble: 156 x 4
## LVOL PROMP FEAT DISP
## <dbl> <dbl> <dbl> <dbl>
## 1 14.5 3.52 39.9 21.4
## 2 14.2 3.7 25.8 34.6
## 3 14.3 3.42 23.3 27.4
## 4 14.3 3.55 25.5 25.7
## 5 14.2 3.64 39.2 30.2
## 6 14.0 3.78 13.1 41.7
## 7 14.0 3.86 17.1 37.6
## 8 14.0 3.60 24.5 35.1
## 9 14.1 3.72 15.5 34.2
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## 10 14.2 3.52 24.8 29.2
## # ... with 146 more rows

Here’s an exploratory plot of the all the variables

GGally::ggpairs(foods) + theme_bw()
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Here are the results of the regression model fitted on the data set

mod0 <- lm(LVOL ~ 1, foods)
mod1 <- lm(LVOL ~ PROMP, foods)
mod2 <- lm(LVOL ~ PROMP + FEAT, foods)
mod3 <- lm(LVOL ~ PROMP + FEAT + DISP, foods)
mtable("Model 1" = mod1, "Model 2" = mod2, "Model 3" = mod3,

summary.stats = c("sigma", "R-squared", "F", "p", "N",
"Log-likelihood", "Deviance" , "AIC", "BIC"))

##
## Calls:
## Model 1: lm(formula = LVOL ~ PROMP, data = foods)
## Model 2: lm(formula = LVOL ~ PROMP + FEAT, data = foods)
## Model 3: lm(formula = LVOL ~ PROMP + FEAT + DISP, data = foods)
##
## =========================================================
## Model 1 Model 2 Model 3
## ---------------------------------------------------------
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## (Intercept) 18.409*** 17.150*** 17.237***
## (0.302) (0.249) (0.249)
## PROMP -1.197*** -0.904*** -0.956***
## (0.087) (0.069) (0.073)
## FEAT 0.010*** 0.010***
## (0.001) (0.001)
## DISP 0.004*
## (0.002)
## ---------------------------------------------------------
## sigma 0.172 0.127 0.125
## R-squared 0.549 0.756 0.763
## F 187.104 236.997 163.425
## p 0.000 0.000 0.000
## N 156 156 156
## Log-likelihood 54.371 102.362 104.752
## Deviance 4.549 2.459 2.385
## AIC -102.743 -196.724 -199.504
## BIC -93.593 -184.525 -184.254
## =========================================================
## Significance: *** = p < 0.001; ** = p < 0.01;
## * = p < 0.05

As a side note,

• Log-likelihood refers to the log-likelihood value of the normal regression model, obtained using the
estimated values of the parameters.

• AIC refers to Akaike’s information criterion, an estimator of the relative quality of statistical models
for a given set of data. It is given by the formula AIC = −2 log-likelihood + 2k, where k is the number
of parameters of the model.

• BIC refers to the Bayesian information criterion, another criterion for model selection. It is given by
the formula BIC = −2 log-likelihood + k log n, where k is the number of parameters of the model and
n is the number of data points.

• There are other information criterion out there, but these are probably the two most commonly used
ones.

• The model with the lowest information criterion is preferred.

Consider the ANOVA table for Model 3

knitr::kable(anova(mod3), digits = 3)

Df Sum Sq Mean Sq F value Pr(>F)
PROMP 1 5.527 5.527 352.305 0.000
FEAT 1 2.090 2.090 133.243 0.000
DISP 1 0.074 0.074 4.729 0.031
Residuals 152 2.385 0.016

And here are the diagnostic plots

diag.plots <- lindia::gg_diagnose(mod3, plot.all = FALSE)
diag.plots <- lapply(diag.plots, function(x) x + theme_bw())
diag.plots[[2]] <- diag.plots[[2]] + geom_smooth(se = FALSE)
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diag.plots[[3]] <- diag.plots[[3]] + geom_smooth(se = FALSE)
diag.plots[[4]] <- diag.plots[[4]] + geom_smooth(se = FALSE)
diag.plots[[5]] <- diag.plots[[5]] + geom_smooth(se = FALSE)
lindia::plot_all(diag.plots[1:6])
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QUESTIONS

1. What are the regression equations for Models 1-3?
2. Which model should we choose? Comment on model selection based on various criterion such as R2,

Log-likelihood, AIC, BIC and possibly others.
3. Consider Model 3. Are all the coefficients statistically significant?
4. For Model 3, state the 95% confidence interval for the three coefficients.
5. For Model 3, give an interpretation of the coefficients of these models.
6. In the ANOVA table above, which value represents the estimate for σ2?
7. In the ANOVA table above, how do you obtain the F -value of of 163.425 as given in the regression

table results?
8. What is the contribution of the variable DISP to the regression model? In other words, what is the

percentage of DISP‘s regression sum of squares in consideration of all regressors’ sum of squares?
9. Comment on the diagnostic plots.

10. Can we plot Model 3 fitted regression line?

Exercise 2

Read the article Kobina & Abledu, “Multiple Regression Analysis of the Impact of Senior Secondary
School Certificate Examination (SSCE) Scores on the final Cumulative Grade Point Average (CGPA)
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of Students of Tertiary Institutions in Ghana.” (link here: https://pdfs.semanticscholar.org/68ba/
ad469ae2f59f194f6e97f1c3d262fc2c6375.pdf).

1. In your own words, state the authors’ research question. Are they trying to answer a causal question?

2. What is their independent variable? What are their dependent variables?

3. What is the main finding from the paper? In other words, how do the authors answer their research
question? What is the main evidence they use to make this claim? Put this in your own words.

Read more

1. When we have data that is non-continous (e.g. binary data, categorical data, count data, etc.), certain
assumptions of the linear model are violated (which ones?). We have to fit a generalised linear model
in such cases. Examples include logistic regression, Poisson regression, etc. Find some introductory
material on these kinds of regression models.

2. What happens when we have explanatory variables which are categorical in nature? E.g. Sex, Likert
scale responses, political party, etc. Read up on the use of “dummy variables” in regression analysis.

3. When we have a lot of predictor variables, the model may not adequately fit the data. How do we
perform model/variable selection? One way is to do forward/backward selection or otherwise known
as stepwise addition/delection scheme. Read up on this method.

4. When we have too many variables, specifically when p > n, the linear regression model becomes
mathematically impossible to fit. Why is this?
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