SM4202 Exercise 3

- 1. Let X and Y be independent exponential random variables with rates λ and μ respectively. Find, for x, y > 0,
 - (a) P(X < x);

Solution:

$$P(X < x) = \int_0^x \lambda e^{-\lambda \tilde{x}} d\tilde{x}$$
$$= [-e^{-\lambda \tilde{x}}]_0^x$$
$$= 1 - e^{-\lambda x}.$$

(b) P(X < Y);

Solution: Recall the law of total probability $P(A) = \sum_{j} P(A|B_j) P(B_j)$, where B_j is a partition of Ω . Take A = (X < Y), and $B_j = (X = y)$. Then,

$$P(X < Y) = \int_{y=0}^{\infty} P(X < Y | X = y) P(X \in dy)$$
$$= \int_{y=0}^{\infty} P(Y > y) P(X \in dy)$$
$$= \int_{y=0}^{\infty} e^{-\mu y} \lambda e^{-\lambda y} dy$$
$$= \lambda \int_{0}^{\infty} \frac{\lambda + \mu}{\lambda + \mu} e^{-(\lambda + \mu)y} dy$$
$$= \frac{\lambda}{\lambda + \mu}.$$

(c) P(X + Y > x + y | Y = y);

Solution:

$$P(X + Y > x + y | Y = y) = P(X + y > x + y)$$
$$= P(X > x)$$
$$= e^{-\lambda x}.$$

(d) the distribution of $X \wedge Y =: \min(X, Y)$; and

Solution: Let $S = X \land Y$. Then $(S > x) \equiv (X > x) \cap (Y > x)$ (try drawing the two sets on an X-Y plane to see this).

$$P(X \wedge Y) = P((X > x) \cap (Y > x))$$

= P(X > x) P(Y > x) by independence
= $e^{-\lambda x}e^{-\mu x} = e^{-(\lambda + \mu)x}$.

Thus $X \wedge Y =: \min(X, Y) \sim \exp(\lambda + \mu).$

(e) $P(X < Y | X \land Y = a).$

Solution:

$$P(X < Y | X \land Y = a) = \frac{P((X < Y) \cap (X \land Y = a))}{P(X \land Y = a)}$$

$$= \frac{P((X \in da) \cap (Y > a))}{P(X \land Y = a)}$$

$$= \frac{\lambda e^{-\lambda a} e^{-\mu a}}{(\lambda + \mu) e^{-(\lambda + \mu)x}}$$

$$= \frac{\lambda}{\lambda + \mu}.$$

2. Consider the following simplistic model of transitions between social classes as defined by Sociologists. Only males are considered, and by assumption every male has exactly one son. Let X_n denote the social class of the individual at generation n, and X_{n+1} the social class of his son, and so on. We assume that X_n forms a discrete-time Markov Chain with states $\{1, ..., s\}$ and one-step transition probabilities

$$p_{ij} = \theta + (1 - \theta)\phi_j \quad \text{for } i = j$$
$$p_{ij} = (1 - \theta)\phi_j \quad \text{for } i \neq j$$

where $i, j = 1, ..., s, \phi_j > 0$ and $\sum_{j=1}^{s} \phi_j = 1$.

Let state *s* denote the "highest" social class called 'toffs'. What is the expected number of generations taken by a family starting in social class 'toffs' to next be in this class? *Hint: You need only consider two states: 'toffs' and 'not toffs'.*

Solution: Following the hint, we need only consider a reduced model with two states $\{1 = \text{Not toffs}, 2 = \text{Toffs}\}$. Then we have the probabilities

$$p_{11} = 1 - (1 - \theta)\phi \qquad p_{12} = (1 - \theta)\phi p_{22} = (1 - \theta)(1 - \phi) \qquad p_{22} = \theta + (1 - \theta)\phi$$

where $\phi := \phi_s$ and $(1 - \phi) = \sum_{j \neq s} \phi_j$.

Let X_n denote the state at the *n*'th generation, N = No. of generations until first toff, and $E_i = E(N|X_0 = i)$ for i = 1, 2. We are interested in E_2 . We have

$$E_2 = 1 + (1 - \theta)(1 - \phi)E_1$$

Similarly,

$$E_1 = 1 + (1 - (1 - \theta)\phi)E_1$$
$$= 1 + (1 - \phi + \theta\phi)E_1$$
$$\Rightarrow I = 1/E_1 + I - \phi + \theta\phi$$
$$\Rightarrow E_1 = 1/\phi(1 - \theta).$$

Thus

$$E_{2} = 1 + \frac{(1-\theta)(1-\phi)}{\phi(1-\theta)} = 1 + \frac{1-\phi}{\phi}.$$

- 3. Which of the following possesses the Markov property? *Hint: is all you need to know contained in the information you have at time t?*
 - (a) displacement $\{x_t | t \ge 0\}$ of a particle falling under constant non-zero gravitational attraction $\ddot{x} = -g$;
 - (b) velocity $\{v_t | t \ge 0\}$ of that same particle, $\dot{v} = -g$;
 - (c) if a bus arrives at an exponentially distributed (rate 1) random time T, the random process X_t where $X_t = \mathbb{1}\{t \leq T\}$; and
 - (d) as in (c) above, but T does not have an exponential distribution.

Solution: (a) No. To calculate x you need \dot{x} .

- (b) Yes. $v_t = v_0 gt$.
- (c) Yes. Exponential waiting times are memoryless.
- (d) No. Only exponential waiting times are memoryless.
- 4. Consider the two-state Markov chain with Q-matrix

$$Q = \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix}.$$

Write down the Kolmogorov equations. Verify by substitution that they are solved by

$$p_t(0,0) = p_t(1,1) = e^{-t} \cosh t$$

 $p_t(0,1) = p_t(1,0) = e^{-t} \sinh t.$

Give a formula for $P(X_{2\pi} = 1, X_{\pi} = 1 | X_0 = 1)$.

Solution: Note that $\sinh t = \frac{1-e^{-2t}}{2e^{-t}}$ while $\cosh t = \frac{1+e^{-2t}}{2e^{-t}}$. Let \mathbf{P}_t be a matrix with (i, j)-th entries equal to $\mathbf{P}(X_t = j | X_0 = i)$. The Kolmogorov forward and backward equations are given by $\dot{\mathbf{P}}_t = \mathbf{P}_t \mathbf{Q}$ and $\dot{\mathbf{P}}_t = \mathbf{Q} \mathbf{P}_t$ respectively.

Differentiating the above transition probabilities we obtain

$$\dot{p}_t(0,0) = \dot{p}_t(1,1) = e^{-t} \sinh t - e^{-t} \cosh t$$
$$\dot{p}_t(0,1) = \dot{p}_t(1,0) = e^{-t} \cosh t - e^{-t} \sinh t.$$

While the RHS of the (backward) equations are

$$\begin{pmatrix} e^{-t}\cosh t & e^{-t}\sinh t \\ e^{-t}\sinh t & e^{-t}\cosh t \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} e^{-t}\sinh t - e^{-t}\cosh t & e^{-t}\cosh t - e^{-t}\sinh t \\ e^{-t}\cosh t - e^{-t}\sinh t & e^{-t}\sinh t - e^{-t}\cosh t \end{pmatrix}$$

Now

$$P(X_{2\pi} = 1, X_{\pi} = 1 | X_0 = 1) = P(X_{2\pi} = 1 | X_0 = 1, X_{\pi} = 1) P(X_{\pi} = 1 | X_0 = 1)$$

= $P(X_{\pi} = 1 | X_0 = 1)^2$
= $p_{\pi}(1, 1)^2$
= $(e^{-\pi} \sinh \pi - e^{-\pi} \cosh \pi)^2$
= $(-e^{-\pi}e^{-\pi})^2 = e^{-4\pi}$.

5. A Markov chain $X_t, t \ge 0$ with state space $\{0, 1\}$ has the following transition rates

$$q_{01} = 3, \qquad q_{10} = 5.$$

We assume that X satisfies the standing assumptions and that the regularity conditions of Kolmogorov forward differential equations hold.

(a) Write down its *Q*-matrix of rates.

(b) Write down both Kolmogorov backward and forward differential equations.

Solution: They are $\dot{P}_t = QP_t$ and $\dot{P}_t = P_tQ$ respectively.

(c) Demonstrate that the transition probability functions $p_t(0,0)$ and $p_t(1,1)$ are given by

$$p_t(0,0) = \frac{5+3e^{-8t}}{8}, \qquad p_t(1,1) = \frac{3+5e^{-8t}}{8}.$$

Solution:

Step 1: Calculate eigenvalues of Q. This is done by solving (-3 - u)(-5 - u) - 15 = 0, which yields u = 0, -8.

Step 2: Find the eigenvectors of Q, one of which is $v_1 = (1, 1)^{\top}$ associated with $u_1 = 0$. For the other one, solve

$$\begin{pmatrix} -3 & 3\\ 5 & -5 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = -8 \begin{pmatrix} a\\ b \end{pmatrix}$$

Giving us the equations

$$-3a + 3b = -8a$$
$$5a - 5b = -8b$$

which implies $-40a - 24b = 0 \Rightarrow a = -b(3/5)$. So $v_2 = (-3, 5)^{\top}$ is an eigenvector.

Step 3: Solve V^{-1} :

$$\begin{pmatrix} 1 & -3 \\ 1 & 5 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 5 & 3 \\ -1 & 1 \end{pmatrix}$$

Step 4: Solution is $P_t = e^{Qt}$.

$$P_t = \frac{1}{8} \begin{pmatrix} 1 & -3 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{-8t} \end{pmatrix} \begin{pmatrix} 5 & 3 \\ -1 & 1 \end{pmatrix}$$
$$= \frac{1}{8} \begin{pmatrix} 5 + 3e^{-8t} & 3 - 3e^{-8t} \\ 5 - 5e^{-8t} & 3 + 5e^{-8t} \end{pmatrix}$$

(d) Compute the equilibrium (or long-run) distribution of X.

Solution: As $t \to \infty$, $P_t \to A$, where

$$A = \frac{1}{8} \begin{pmatrix} 5 & 3\\ 5 & 3 \end{pmatrix}$$