Generate data for simulation studies.
Usage
gen_data_growth(
n = 100,
rel = 0.8,
dist = "Normal",
lavsim = FALSE,
scale = 1,
seed
)
gen_data_twofac(
n = 100,
rel = 0.8,
dist = "Normal",
lavsim = FALSE,
meanstructure = FALSE,
scale = 1,
seed
)
Arguments
- n
Sample size
- rel
Reliability of the growth curve model. Either 0.8 or 0.5.
- dist
Distribution of the manifest variables. Either "Normal", "Kurtosis" or "Non-normal".
- lavsim
Logical. If TRUE, simulate data using lavaan's lavaan::simulateData function.
- scale
Scaling factor for the data. Default is 1, but for the growth curve model data, it is found that having a smaller scale (1/10) can be beneficial for convergence.
- seed
Seed for reproducibility.
- meanstructure
Logical (this is almost always
FALSE
). IfTRUE
, include the mean structure in the estimation. Only for two-factor models (since growth models do not have a mean structure).
Value
A data frame with simulated data. For convenience, both the true
values ("truth"
) and distribution ("dist"
) are attached as attributes.
Details
The function truth()
is a simple extractor function to retrieve the true
values of the data set generated by gen_data_growth()
or
gen_data_twofac()
.
References
Dhaene, S., & Rosseel, Y. (2022). Resampling Based Bias Correction for Small Sample SEM. Structural Equation Modeling: A Multidisciplinary Journal, 29(5), 755–771. https://doi.org/10.1080/10705511.2022.2057999
Examples
dat <- gen_data_growth(n = 100, rel = 0.8)
head(dat)
#> Day0 Day1 Day2 Day3 Day4 Day5 Day6
#> 1 36.40856 -25.118196 -27.520137 -1.116821 -9.163532 -38.95116 -47.14138
#> 2 -58.74332 -47.643378 -107.799366 -94.357642 -106.091947 -116.45859 -156.21584
#> 3 -6.21620 18.441827 6.924438 -19.249225 12.677615 -39.48140 -28.20111
#> 4 -40.13273 2.767599 -51.366649 -61.071713 -61.725349 -78.29509 -75.41545
#> 5 28.39697 13.133848 -9.251629 11.505928 -17.268852 -11.58354 -20.68498
#> 6 -67.28882 -37.558663 -45.854703 -53.196658 -98.382638 -99.99884 -99.28088
#> Day7 Day8 Day9
#> 1 -7.68428 -57.26876 -78.87382
#> 2 -132.82923 -159.82626 -191.52484
#> 3 -58.39856 -91.62914 -78.02064
#> 4 -103.11656 -144.45654 -135.48955
#> 5 10.97278 -20.25585 -44.31569
#> 6 -112.29904 -109.29257 -162.76015
truth(dat)
#> i~~i i~1 s~~s s~1 i~~s v v v v v v v v v v
#> 550 0 100 0 40 500 500 500 500 500 500 500 500 500 500